

Materials and Services

for Wear Protection

Wear Solution with Creative Ideas for Practical Solutions

DURUM VERSCHLEISS-SCHUTZ GMBH was established in 1984 as a manufacturer of advanced hard-facing products. Today DURUM has production and service centres in Brazil, France and the USA and exports to more than 80 countries all over the world!

DURUM provides high performance welding and surfacing wires and powders and is a global market leader in the supply of specialized overlaying consumables that can be applied by a range of processes including: Flux Cored Wire, Plasma Transferred Arc (PTA) Welding, Oxy-fuel Welding, Thermal Spray Powder and Wire.

Besides Willich (Germany) DURUM Group maintains production and workshop facilities in Brazil (Sao Paolo), France (Saint Victor) and the USA (Houston TX). We also support a network of independent agencies throughout the world. We meet demanding requirements of today's industry with a wide array of Welding and Thermal Spray technologies.

The company employs national and international PhD's; welding engineers

and independent experts from well known and respected universities, which ensures that constant material and process development is achieved to the highest standards.

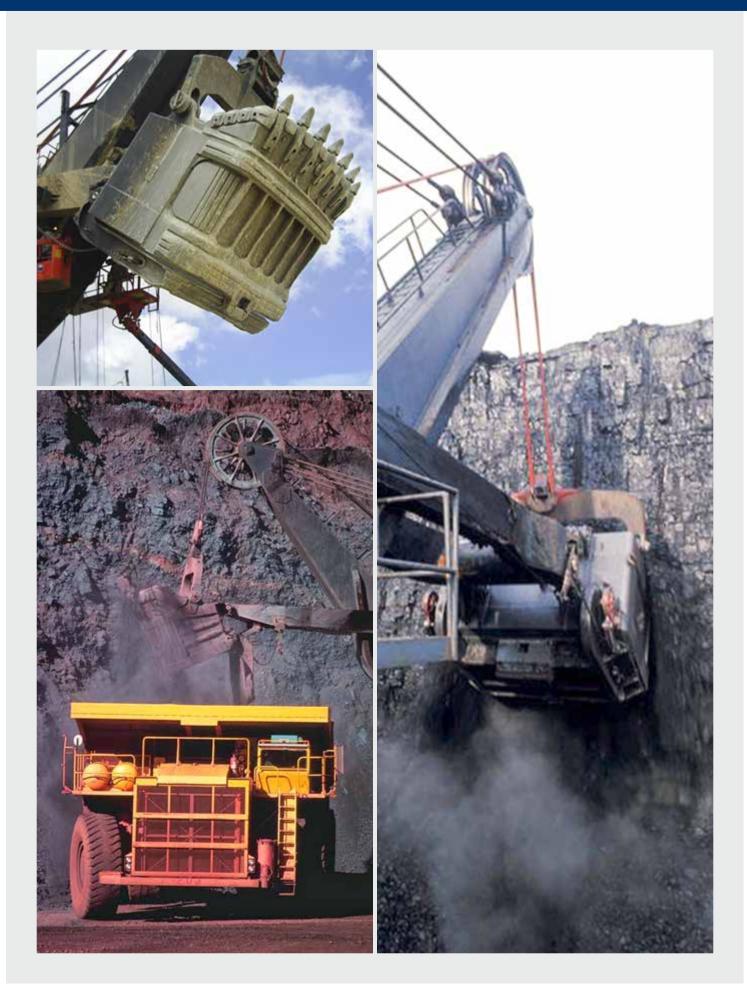
DIN EN ISO 9001:2008 Cert. No.: 01 100 040463

Hard-Facing Products

DURUM focuses on "continuous development" and sets a significant annual budget aside for research and development including new product development, product enhancement and the development of highly specialised solutions to the most challenging applications in the industry.

We meet the demanding requirements of today's industry with a wide array of Welding and Thermal Spray products including Flux Cored Wire, PTA (Plasma Transferred Arc) our famous oxy-acetylene products and last but not least our Thermal Spray Powder and Wire.

Today we have a world-class solution developed for every aspect of wear, typically encountered throughout the industry that outperforms competitive products in the market.


Our wide range of specialized surface hard-facing materials includes:

- Tungsten carbide rods for oxy-acetylene welding
- Nickel, cobalt and iron based flux cored wire
- FCAW wires with tungsten carbide and complex carbides to provide extremely hard and tough coatings, used principially for extreme wear applications
- Tungsten carbides, complex carbides and chromium carbides for manual arc welding
- PTA welding powders
- PTA machines, torches and powder feeders
- Powders for oxy-acetylene welding and spraying

- Fused crushed and spherical tungsten carbides
- Pre-manufactured replacement wear parts
- Thermal spray powders (conforming to DIN EN 1274)
- Thermal spray wires (conforming to DIN EN 14919)

Please observe all appropriate safety regulations in their entirety. The technical informations given in this data sheet reflects the present state of knowledge. They do not form part of any sales contract as guaranteed properties of the delivered materials. Our delivery and sales conditions apply to all contracts included. **Rev.: 4.0 (03/2014)**

Typical Applications of DURUM Products

DURMAT® WC-Co Powders

The development of the thermal spray powders DURMAT® 125 and DURMAT® 135 represented our first steps in this direction. Their characteristic, fine-structured composition with crystallite grain sizes of max. 400 nm is their trademark and a guarantee for high wear resistance. We have also achieved comparable wear resistances in the powder cladding field using PTA or laser methods, by making the WC structure smaller in a similar way.

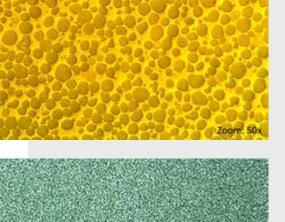
Thanks to their outstanding strength properties, hardfacing alloys based on tungsten carbide (WC) and cobalt take a central position in wear protection.

Our **DURMAT® DNK 1.3** development using finestructured WC thus resulted in hardness in the region of 1,750 HV_{0.5}. In an effort to establish a uniform parlance for identifying alloy structures, the German-speaking carbide

industry has agreed on the following definitions to describe grain size categories. It is generally accepted at present.

1. Abrasive wear

The greater hardness of the nano-scale hardfacing alloy associated with the decreasing WC grain size reduces wear from abrasion considerably. The harder "hardmetal" counters abrasion with a greater resistance.


Wear progresses significantly slower, as the binding metal layer between the fine grain hardfacing crystallites is exceptionally thin, making it harder to wash out. Due to this structural attribute, only very small hardfacing particles are torn out of the structural bond. The spherical shape represents a further form of protection, which is further stabilized by the small grain size; small particles have to expend a great deal more energy to divide and become smaller than coarse ones.

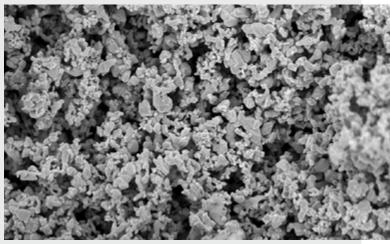
2. Corrosive wear

A characteristic, higher wear resistance also occurs with regard to corrosive wear. As a result of the nano-structure and in particular the significantly reduced intermediate binding metal layer, the corrosive media can only reach the cobalt with difficulty, leading to considerable delays in wear. In turn, only the smallest hardfacing particles escape, corrosion is slowed down considerably.

As in most applications, abrasive and corrosive wear are barely distinguishable, due to the improvement in properties that can be achieved, a nano-structured carbide like **DURMAT® DN 3.0** is the better choice for both forms of wear.

Grain Size in µm							
<0,2	nano						
0,2 - 0,5	ultrafine						
0,5 - 0,8	submicron						
0,8 - 1,3	fine						
1,3 - 2,5	medium						
2,5 - 6,0	coarse						
> 6,0	extra coarse						

Hardness: In WC-Co alloys of the same chemical composition, the hardness is mostly determined by the grain size of the carbide phase, which in turn depends on the primary grain size of the starting powder. When the grain size drops, the hardness increases considerably, meaning that a significantly high hardness level can be reached with the finest starting powders. The increase in hardness is always accompanied by the rise in coercive field strength.


High temperature hardness: With increased grain fineness, these alloys also feature improved hardness properties at high temperatures, so that strength benefits emerge in high-temperature use particularly for wear protection layers made from them. The nano-scale WC raises the strength level a stage higher.

Toughness: A smaller grain size in the carbide phase with the same Co content results in a decrease in the difference between WC grains and hence to a reduction in particle movement.

Compressive strength: The high compressive strength of these carbide alloys is one of the most important properties in these materials, as it is significant in practically all technical applications. After diamond, hardmetal (cemented tungsten carbide) is the most pressure resistant material. This property is also of predominant significance in wear protection. The increase in the microstructure leads to a significant rise and as a result these nano tungsten carbides have the highest compressive strength.

Product DURMAT®	-	DN 3.0	DNK 1.3
Alloy type	-	WC-8Co	WC-Co
Parameter	Unit	Typical Data	Typical Data
Co	%	7.5 - 8.5	6 - 7
CTOTAL	%	< 5.7	< 5.65
Fe	%	< 0.25	< 0.25
Ті	%	< 0.04	< 0.04
Mo+Nb+Ta	%	< 0.4	< 0.4
Others	%	bal.	bal.
Hardness	HV	2,400 - 2,550	1,950 - 2,050
Density	g/cm³	14.2 - 14.5	14.7 - 14.9
Apparent density	g/cm³	> 8.5	> 8
η-Phase	%	< 1	<1
Microporosity	<6%	<a04 b02="" c02<="" th=""><th><a04 b02="" c00<="" th=""></a04></th></a04>	<a04 b02="" c00<="" th=""></a04>
Binder lakes: >25µm	%	<6	<6
Binder lakes: >50µm	%	0	0
Cavities: >25µm	%	<6	<6
Cavities: >75µm	%	0	0
Grain Size	μm	45 - 300	45 - 250
Coercitive field strength	kA/m	> 36	> 18
Magnetic saturation	µTm³/kg	13.7	11
Saturation percentage	%	88 - 98	> 92

Tungsten Carbide and its Derivatives

Fused Tungsten Carbide (FTC) is one of the hardest and most abrasion resistant materials used in modern wear resistance and tool technology.

Product		DURMAT® FTC	DURMAT® SFTC	
Alloy type	-	WC-W ₂ C	WC-W ₂ C	
Parameter	Unit	Typical data	Typical data	
CTOTAL	%	3.8 - 4.1	3.8 - 4.1	
Cfree	%	0.1 max.	0.1 max.	
0_2 sieve range	%	0.05 max.	0.05 max.	
0_2 sub sieve range	%	0.2 max.	0.2 max.	
Fe	%	0.3 max.	0.3 max.	
Co	%	0.3 max.	0.3 max.	
Hardness	HV	2,360	3,000	
Structure	-	mainly feather	fine	
Density	g/cm³	16 - 17	16 - 17	
Melting point	°C/°F	2,860/5,176	2,860/5,176	

DURMAT[®] Spherical Tungsten Carbide (SFTC) is the most wear resistant Fused Tungsten Carbide we can offer.

DURMAT® FTC Powders

FTC is the eutectic composition of WC and W_2 C. The average carbon content of our FTC is 3.8 – 4.1 wt. % and the phases can be estimated to be approximately 78 – 80% W_2 C and 20 – 22% WC.

Application: hardfacing metallic surfaces exposed to extreme mechanical load. In this case FTC should be used as a fine or coarser powder, which is embedded in the metallic matrix or is precipitated into hard alloys (surface coating by thermal spraying or welding). Using powder metallurgical processes, it is possible to produce parts of nearly any shape, which can contain hard materials or diamonds together with a metal binder and FTC (reinforcing the hardness of diamond tools). FTC equalizes the matrices between the different hardnesses of diamonds and binder in diamond drilling, grinding and honing tools. Excellent for deep well drilling tools and rods, crusher jaws, mixers, concrete and stone saws, hot-pressed tools, screens & conveyors, extrusion housings, hard additives to diamond bits and saws.

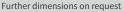
DURMAT® SFTC Powders

These SFTC spherical fused tungsten carbide particles show a fine non-acicular structure with a higher hardness than conventional FTC (>3,000 HV_{0.1}). The increased apparent density combined with a better flowability enable an increase of hard particles in wear resistant coatings and components produced by infiltration.

Using powder metallurgical processes, it is possible to produce parts of nearly any shape, which can contain hard materials or diamonds together with a metal binder and SFTC, reinforcing the hardness of diamond tools. FTC equalizes the matrices between the different hardnesses of diamonds and binder in diamond drilling, grinding and honing tools. Excellent for deep well drilling tools and rods, crusher jaws, mixers, concrete & stone saws, hot-pressed tools, screens & conveyors, extrusion housings and hard additives to diamond bits and saws.

The constant testing of our raw materials, production and preshipment procedures ensure the homogeneity of the compliance with the specifications of all powder grades that we deliver.

The fabrication of the DURMAT® CP – plate is carried out by use of a core- wire welding process. The extreme wear resistance is achieved by use of high quality DURMAT® Flux Cored Wires consumables with high Chromium and Carbon content. The addition of complex carbides enables the formation of a high content of Chromium-carbides and special carbides, so that the required properties are achievable in the first layer in accordance to the DIN EN 14700 (group 10 former DIN 8555)


The characteristic, hyper-eutectic weld metal of the FeCrC hardfacing alloy consists of large, primary deposited carbides of the type M7C3, embedded in the eutectic matrix. The content of the primary carbides mainly affect the wear resistance and can be determined according to the Maratray formula, as follows:

% K = 12,33 (% C) + 0,55 (% Cr) – 15,2 %

The increasing carbide content is related to steady rise of the Cr and C content.

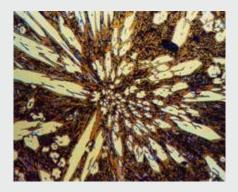
By application of flux cored wires **DURMAT® FD 56** and **62** the primary carbide content can be increased significantly. The addition of complex carbides e.g. NbC subsequently increases the wear resistance performance of the plates..

Base material (mm)	Coating (mm)	Total (mm)	Weight (kg/m ²)					
5	3	8	62					
6	4	10	78					
6	5	11	85					
8	5	13	100					
8	8	16	125					
10	8	18	140					

Delivery forms:

DURMAT[®] CP – plates can be delivered as pre-finished blanks with fixation elements, sink-hole bores or others. Re-coating is carried out with similar alloy electrodes (DURMAT[®] NISE) or cored wires (DURMAT[®] NIFD).

DURMAT® CP 960


For parts exposed to moderate abrasive wear combined with moderate impact and corrosion. Maximum working temperature: 350°C. Typical applications are the steel and cement industries, power stations, mining, concrete, glass and recycling as well as chemical and petrochemical industries.

DURMAT® CP 1000

Similar to CP 960 but for parts exposed to a high abrasive wear in combination with corrosion and low impact. Maximum working temperature: 350°C. Typical applications are the mining, steel, cement, power stations, glass and recycling industries.

DURMAT® CP 1100

For parts subject to high abrasive wear in combination with temperatures up to 650°C together with moderate corrosion and impact. Typical applications are the mining, steel, cement, chemical and petrochemical industries.

Benefits:

- High protection for many wear mechanisms
- High deformability, the plates can be cut via plasma
- Easy weldable based material

DURMAT®	Typical Chemical Composition of Weld Metal (Wt%)								Carbide	Working	Herdness	
DURMAT	С	Si	Mn	Мо	Cr	Nb	V	W	Fe	Content	Temperature	Hardness
CP 960	5.4	1	0.4	-	32	-	-	-	bal.	60 %	350 °C	≈ 58-60 HRC
CP 1000	5.2	1.1	0.4	-	22	7	-	-	bal.	58 %	350 °C	≈ 61-63 HRC
CP 1100	4.8	-	-	4.8	22	4.7	V+W	: 2.5	bal.	60 %	650 °C	≈ 64 HRC

Afore mentioned analysis and hardness values are typical for a 1-layer deposit with even hardness from the top to the base material. These figures are typical for our Flux Cored Plus process.

DURMAT® PLATINUM Wear Plates

DURUM's family of Tungsten Carbide - Nickel base alloys exhibit superior resistance to abrasion and wear, retaining their hardness up to 600°C (approx. 1,000°F) in combination with excellent corrosion resistant properties.

PTA - Plasma Transferred Arc is suitable for almost all cobalt and nickel based alloys as well as specially designed iron based alloys. Primary carbides in combination with those nickel, cobalt and iron based alloys improve the wear resistance remarkably compared to chromium carbide plates.

PTA is a true welding process, with deposits forming a metallurgical bond with the base metal. The dilution level is very close to those obtained by using the oxy-acetylene process.

A further advantage of using the PTA process is the capability of producing thin edge surfaces. Together with the very low dilution (approx. 5%) and the minimal distortion risk, the process is ideal for applications on parts such as Fan Blades.

6	e	•
	100	밑
	<u>iti</u>	itti
	\downarrow	
0	0	0

Typical / Standard Sizes of Wear Plates							
Base Material (mm)	Total ± 1mm						
3	2	5					
5	3	8					
6	4	10					
6	5	11					
8	5	13					
8	8	16					
10	8	18					
Standard base plate type: NF A36-20	01 F390 / DIN 17102 StF36 / ASTM /	1 572gr50					

Standard base plate type: NF A36-201 E390 / DIN 17102 StE36 / ASTM A 572gr50

Other types according to customers specifications e.g. stainless, heat resisting, high strength, etc.

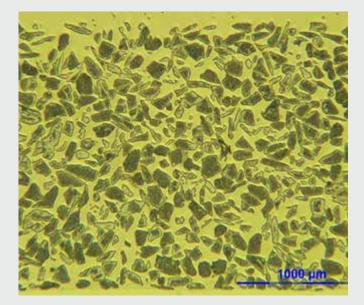
DURMAT® PTA Plates can be cut, bent, rolled, welded, bolted or incorporated into structures to build anti - abrasion assemblies.

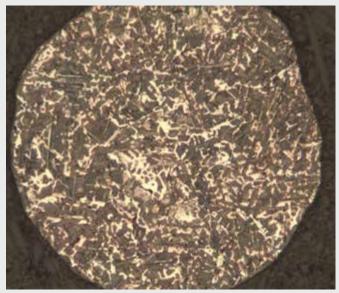
DURMAT® 1061 WP and DURMAT® 1062 WP

Characteristics:

DURMAT® 1061 WP is a composite Wear Plate consisting of a mild steel base plate and a high wear resistant overlay.

The hardfacing deposit consists of a Ni-B-Si matrix with very evenly dispersed Fused Tungsten Carbide (FTC) particles. The chromium free Ni-B-Si alloy shows much harder phases than the well known M7C3 carbides. The inserted fine dispersed FTC shows a hardness of >2,340 HV. Alternative is **DURMAT® 1062** WP with Spherical Fused Tungsten Carbide (SFTC) particles available (≈3,000 HV). Due to the low melting point of the Ni alloy in combination with our unique PTA system for application, the material shows a very low and uniform dilution with the base material.

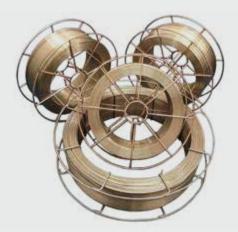

Applications:


DURMAT[®] WP 1061 and DURMAT[®] 1062 WP are rust and acid durable, resistant to heavy abrasion and heat up to 500°C. Because of the high FTC content, the overlay is highly wear resistant. DURMAT[®] WP Plates protect components that encounter heavy mechanical and mineral wear. In particular the 3+2 mm wear plates offer extremely economical solutions for parts such as high speed fan blades, or in the cement industry where components are subject to substantial erosion by abrasive particles such as quartz or feldspar dust.

Technical data:	
Base material size:	2000 x 1000 mm
Coated surface:	1850 x 850 mm
Base material size:	2500 x 1250 mm
Coated surface:	2350 x 1100 mm
Base material size:	3000 x 1500 mm
Coated surface:	2850 x 1350 mm
Smallest thickness of hardfacing:	>2 mm ± 0,5 mm
Thickness of base material:	between 4 and 20 mm on customers specification
Further dimensions on request	

Benefits:

- Very low dilution with the base material (<5%)
- Dense surface with low coefficient of friction
- Extremely economical solutions due to its light weight
- Good formability and can be cut with plasma
- Base material easy to weld


Typical Applications of DURUM Products

Tungsten Carbide and its Derivatives

C	DURMAT® DIN EN 14700 DIN 8555	Chemical Composition & Typical Applications	Hardness	Typical Properties	
	A	Fe-based with FTC	FTC: >2,360 HV _{0.1} Mixed hardness	 Special pre-alloyed tube filled with coarsely grained Fused Tungsten Carbide 	
	T Fe20 G21-GF-55-CG	Tools and machine parts exposed to wear in mining, road construction, ceramic, petroleum, excavation and dredging applications	weld metal: ≈ 55 HRC	(FTC) for oxy-acetylene welding	
	A - PLUS	Fe-based with SFTC		• Similar to DURMAT® A, but filled with	
Fe-based	T Fe20 G21-GF-55-CG	Tools and machine parts exposed to wear in mining, road construction, ceramic, petroleum, excavation and dredging applications	weld metal: ≈ 55 HRC	Spherical Fused Tungsten Carbide	
Fe-b	E	Fe-based with FTC	Mixed hardness weld metal:	 Tube metal filled with medium size Fused Tungsten Carbide for manual 	
	E Fe20 E21-GF-UM- 60-CG	Hard facing unalloyed and low alloyed steels (cast steels) with a maximum carbon content of 0.5% (tools and machine parts that are exposed to wear in mining, excavation, digging, road construction and deep drilling applications)	55-58 HRC	welding	
	E - PLUS	Fe-based with SFTC	Mixed hardness weld metal:	 Nickel core flexible rod coated with bot Fused Tungsten Carbide and Ni-Cr-B-Si 	
	E Fe20 E21-GF-UM- 60-CG	Hard facing unalloyed and low alloyed steels (cast steels) with a maximum carbon content of 0.5% (tools and machine parts that are exposed to wear in mining, excavation, digging, road construction and deep drilling applications)	developed for oxy-acetylene welding		
	В	NiCrBSi-based with FTC	FTC: >2,360 HV _{0.1} NiCrBSi-alloy:	 Nickel core flexible rod coated with both Fused Tungsten Carbide and Ni-Cr-B-Si 	
		Hard facing of ferritic and austenitic steels (steel castings), applied for overlaying mixer blades, screws and conveyors in chemical, dye and food industry. Specially recommended for stabilizer blades in the petroleum industry	≈ 420 - 450 HV _{0.1}	developed for oxy-acetylene welding	
	вк	NiCrBSi-based with SFTC	SFTC: ≈3,000 HV _{0.1}	• Similar to DURMAT [®] B , but filled with	
	T Ni20 G21-UM-55-CG	Hard facing of ferritic and austenitic steels (steel castings), applied for overlaying mixer blades, screws and conveyors in chemical, dye and food industry. Specially recommended for stabilizer blades in the petroleum industry	0.1	Spherical Fused Tungsten Carbide	
	NIA	NiCrBSi-based with FTC		 Rod for oxy-acetylene welding Very high resistance to abrasion 	
Ni-based		Hard facing on ferritic and austenitic steels (steel casings), overlaying mixer blades, conveyors and screws in chemical, dye and food industry. Recommended for hard facing rock bits and stabilizers in the petroleum industry.		 Very high resistance to abrasion The matrix is highly resistant to acids, alkalis and other corrosive media 	
Ni-b	NIA - PLUS	NiCrBSi-based with SFTC	SFTC: ≈3,000 HV _{0.1}	 Similar to DURMAT[®] NIA , but filled with 	
		Hard facing on ferritic and austenitic steels (steel casings), overlaying mixer blades, conveyors and screws in chemical, dye and food industry. Recommended for hard facing rock bits and stabilizers in the petroleum industry.	0.1	Spherical Fused Tungsten Carbide	
	NI3	Ni-based with FTC and Special Carbide	FTC: >2,360 HV _{0.1} Matrix: 480-520 HV _{0.1}	 Tubular electrode filled with a mixture of FTC and special carbides in combination with a special Ni-alloy 	
	T Ni20 MF21-55-CGZ	Repairing and hard facing ferritic and austenitic steels, stabilizer blades, conveyor screws, milling plates, deep drilling tools, and mixer blades		Highly resistant to extreme abrasion in combination with corrosion	
	NI3 - PLUS	Ni-based with FTC and Special Carbide	SFTC: ≈ 3,000 HV _{0.1} Matrix: 450-480 HV _{0.1}	• Similar to DURMAT® NI3 , but filled with	
	T Ni20 MF21-55-CGZ	Repairing and hard facing ferritic and austenitic steels, stabilizer blades, conveyor screws, milling plates, deep drilling tools, and mixer blades	•30 400 HV _{0.1} Other Carbides: ≈2,900 HV _{0.1}	Spherical Fused Tungsten Carbide	

I	DURMAT [®] DIN EN 14700 DIN 8555	Chemical Composition & Typical Applications	Hardness	Typical Properties	
	NISE	Ni-based with FTC	FTC: ≈2,360 HV _{0.1}	Tubular electrode filled with Fused Tungsten Carbide and pecial nickel alloy foreward working	
Ni-based		Repairing and hard facing ferritic and austenitic steels (steel castings), stabilizer blades, conveyor screws, milling plates, deep drilling tools, and mixer blades	Ni-Matrix: ≈ 480-520 HV _{0.1}	for manual welding • Highly reststant to extreme abrasion in combination with corrosion	
Ni-b	NISE - PLUS	Ni-based with SFTC	SFTC: ≈3,000 HV _{0.1}	 Similar to DURMAT[®] NISE, but filled with 	
	E Ni20 E21-UM-60-CGZ	Repairing and hard facing ferritic and austenitic steels (steel castings), stabilizer blades, conveyor screws, milling plates, deep drilling tools, and mixer blades	SPTC: ~3,000 HV _{0.1}	Spherical Fused Tungsten Carbide	
	cs	Sintered tungsten carbide fragments in a ductile Cu-Ni-Zn matrix	-	 Tensile strength of 100,000 psi Homogeneous distribution of the 	
Spec. Alloy		Downhole reamers, openers, fishing tools (spears), coring tools, reamers, milling tools and stabilizers.		sintered tungsten carbide particles	
Spec	TINNING-	Nickel bronze rods	-	 Fume reduced nickel bronze rods containing 10% nickel developed for oxyacetylene welding High mechanical properties 	
	RODS	Binder for the sintered tungsten carbide particles with DURMAT® CS			
	FTC Fused Tungsten	WC-W ₂ C	≈2,360 HV _{0.1}	• For hardfacing of metallic surfaces exposed to extreme mechanical load	
	Carbide	Deep well drilling tools and rods, crusher jaws, mixers, concrete and stone saws, hot-pressed tools, screens & conveyors, extrusion housings, hard additives to diamond bits and saws		and reinforcing the hardness of diamond tools	
	Spherical	WC-W ₂ C	≈3,000 HV _{0.1}	 For hardfacing of metallic surfaces exposed to extreme mechanical load and reinforcing the hardness of diamonc tools 	
	Fused Tungsten Carbide	Deep well drilling tools and rods, crusher jaws, mixers, concrete and stone saws, hot-pressed tools, screens & conveyors, extrusion housings, hard additives to diamond bits and saws	.1	 Increased apparent density combined with a better flowability 	
ides	DN 3.0	WC-Co 92/8	2,400-2,550 HV _{0.1}	Highly wear resistant WC/Co alloy based	
n Carbi		Rock-bits, special tools for deep drilling	0.1	on "Nano" FTC	
lungsten Carbides	DNK 1.3	WC-Co 94/6	1,950 – 2,050 HV	WC-Co-Alloy with fine FTC Very good abrasive and corrosive very strice constraintd with bink	
F		Rock-bits, special tools for deep drilling		properties associated with high hardness	
	мстс	Monocrystalline Tungsten Carbide with 6.12% C-content	1,600 HV	 Good wear protection properties Good thermal stability, but lower 	
		PTA-overlay for parts subject to wear		hardness as compared to FTC/SFTC	
	WC IV	Crushed Tungsten Carbide with 6-10% Co - content	1,500-1,800 HV	 Concentrated wear protection for the area exposed to maximum wear Easy application of an extremely hard 	
		Mining, deep drilling-ason tool joints in the petroleum industry		 Easy application of an extremely hard and abrasion resistant protective surface for highly stressed areas 	

Spray & Fuse

◎ TYPICAL CHEMICAL COMPOSITION (Wt%) & TYPICAL APPLICATIONS								
MIX	С	Si	В	Cr	Ni	W	HARDNESS	TYPICAL PROPERTIES
-	0.35	3.8	1.6	9 - 10	bal.	-	35-39 HRC	 Resistant to corrosion, abrasion and heat Excellent gliding on high tensile strength steels
On small areas or die edges, mold castings in the glass industry, fittings, pistons and guides, buffer layers in addition to DURMAT® B hardfacings								and plastics • High wear and heat resistant up to 550 ° C
-	0.8 - 1	3.8	3.3	16 - 17	bal.	-	56 HRC	 Resistant to corrosion, abrasion and heat Excellent gliding on high tensile strength steels and plastics
				lustry, fittings,	pistons and g	uides, buffer		 Rust and acid resistant, cavitation and corrosion resistant High wear and heat resistant up to 550 ° C
Matrix 60	0.8 - 1	3.8	3.3	16-17	-	0.8-1		
FTC 40	3.8 - 4.1	-	-	-	-	bal.	FTC: >2360 HV DURMAT [®] 60-A: ≈ 56 HRC	 Resistant to corrosion, abrasion and heat High wear and heat resistant up to 550 ° C Rust and acid resistant
				manufacturing	g of petrochem	nical		
Matrix 50	0.8 - 1	3.8	3.3	16-17	-	0.8 - 1	DURMAT [®] 60 - A: ≈ 56 HRC DURMAT [®] FTC: > 2360 HV	 Resistant to corrosion, abrasion and heat High wear and heat resistant up to 550 ° C Rust and acid resistant
FTC 50	3.8 - 4.1	-	-	-	-	bal.		
Matrix 40	0.8 - 1	3.8	3.3	16 - 17	-	0.8 - 1	DURMAT [®] 60 - A: ≈ 56 HRC DURMAT [®] FTC: ≈ 2360 HV	
FTC 60	3.8 - 4.1	-	-	-	-	bal.		 Resistant to corrosion, abrasion and heat High wear and heat resistant up to 550 ° C Rust and acid resistant
				0,1				
Matrix 25	0.8 - 1	3.8	3.3	16 - 17	-	0.8 - 1	DURMAT [®] 60 - A:	Desistant to correction a basis and basis
FTC 75	3.8 - 4.1	-	-	-	-	bal.	 ≈ 56 HRC DURMAT[®] FTC: ≈ 2,360 HV 	 Resistant to corrosion, abrasion and heat High wear and heat resistant up to 550 ° C Rust and acid resistant
				, 0,1				
Matrix 20	0.8 - 1	3.8	3.3	16 - 17	-	0.8 - 1	DURMAT [®] 60 - A:	
FTC 80	3.8 - 4.1	-	-	-	-	bal.	≈ 56 HRC DURMAT [®] FTC: > 2360 HV _{0,1}	 Resistant to corrosion, abrasion and heat High wear and heat resistant up to 550 ° C Rust and acid resistant
	- On small area layers in addit - On small area layers in addit Matrix 60 FTC 40 Mechanical er apparatus, de Matrix 50 FTC 50 Mechanical er apparatus, de Matrix 40 FTC 60 Mechanical er apparatus, de Matrix 25 FTC 75 Mechanical er apparatus, de	MIXC	MIXCSi.0.353.8On small areas or die edges, mold castings layers in addition to DURMAT* B hardfacing and addition to DURMAT* B hardfacing and an addition to DURMAT* B hardfacing and a	MIXCSiB.0.353.81.6On small areas or die edges, mold castings in the glass inclayers in addition to DURMAT* B hardfacings3.3On small areas or die edges, mold castings in the glass inclayers in addition to DURMAT* B hardfacings3.3On small areas or die edges, mold castings in the glass inclayers in addition to DURMAT* B hardfacings3.3Matrix 600.8 - 13.83.3FTC 403.8 - 4.1Matrix 500.8 - 13.83.3FTC 503.8 - 4.1Matrix 400.8 - 13.83.3FTC 603.8 - 4.1Matrix 400.8 - 13.83.3FTC 753.8 - 4.1Matrix 250.8 - 13.83.3FTC 753.8 - 4.1Matrix 220.8 - 13.83.3FTC 753.8 - 4.1Matrix 200.8 - 13.83.3	MIXCSiBCr0.353.81.69-10On small areas or die edges, mold castings in the glass industry, fittings, layers in addition to DURMAT® B hardfacings3.316-170.8-13.83.316-17On small areas or die edges, mold castings in the glass industry, fittings, layers in addition to DURMAT® B hardfacings3.316-17On small areas or die edges, mold castings in the glass industry, fittings, layers in addition to DURMAT® B hardfacings3.316-17TFC 403.8-4.1Matrix 600.8-13.83.316-17Matrix 500.8-13.83.316-17Matrix 500.8-13.83.316-17FTC 503.8-4.1Matrix 400.8-13.83.316-17FTC 603.8-4.1Matrix 250.8-13.83.316-17FTC 753.8-4.1Matrix 200.8-13.83.316-17Matrix 200.8-13.83.316-17Matrix 200.8-13.83.316-17Matrix 200.8-13.83.316-17Matrix 200.8-13.83.316-17Matrix 200.8-13.83.316-17Matrix 200.8-13.83.316-17Matrix 200.8-13.83.316-17Matrix 200.8-13.83.3 <td>MIXCSiBCrNi.0.353.81.69 - 10bal.On small areas or die edges, mold castings in the glass industry, fittings, pistons and gr10.8 - 13.83.316 - 17bal.On small areas or die edges, mold castings in the glass industry, fittings, pistons and gr10.8 - 13.83.316 - 17bal.On small areas or die edges, mold castings in the glass industry, fittings, pistons and grNatrix 600.8 - 13.83.316 - 17oFTC 403.8 - 4.1oMatrix 500.8 - 13.83.316 - 17oPTC 503.8 - 4.1oMatrix 500.8 - 13.83.316 - 17oPTC 503.8 - 4.1ooMatrix 700.8 - 13.83.316 - 17oPTC 603.8 - 4.1ooMatrix 400.8 - 13.83.316 - 17oPTC 603.8 - 4.1ooMatrix 250.8 - 13.83.316 - 17oPTC 753.8 - 4.1ooMatrix 250.8 - 13.83.316 - 17oPTC 753.8 - 4.1ooMatrix 200.8 - 13.83.316 - 17oMatrix 200.8 - 13.83.3</td> <td>MIXCSiBCrNiW.0.353.81.69 - 10balOn small areas or die edges, mold castings in the glass ind the glass ind differences0.8 - 13.83.316 - 17balOn small areas or die edges, mold castings in the glass ind the glass ind the glass ind differences0.8 - 13.83.316 - 17balMatrix 600.8 - 13.83.316 - 17.0.8 - 10.8 - 1FTC 403.8 - 4.1Matrix 500.8 - 13.83.316 - 17.0.8 - 1FTC 503.8 - 4.1Matrix 400.8 - 13.83.316 - 17.0.8 - 1FTC 603.8 - 4.1Matrix 400.8 - 13.83.316 - 17Matrix 400.8 - 13.83.316 - 17Matrix 400.8 - 13.83.316 - 17Matrix 400.8 - 13.83.316 - 17</td> <td>MIXCSiBCrNiW\cdot0.353.81.69-10bal\cdot0.353.81.69-10bal\cdot0.353.81.69-10bal\cdot0.8-13.83.316-17bal\cdot0.8-13.83.316-17bal\cdot0.8-13.83.316-17o.8-1\cdot0.8-13.83.316-17o.8-1\cdot3.8-4.10.8-1bal\cdot3.8-4.10.8-1bal\cdot3.8-4.10.8-1bal\cdot3.8-4.10.8-1bal\cdot</td>	MIXCSiBCrNi.0.353.81.69 - 10bal.On small areas or die edges, mold castings in the glass industry, fittings, pistons and gr10.8 - 13.83.316 - 17bal.On small areas or die edges, mold castings in the glass industry, fittings, pistons and gr10.8 - 13.83.316 - 17bal.On small areas or die edges, mold castings in the glass industry, fittings, pistons and grNatrix 600.8 - 13.83.316 - 17oFTC 403.8 - 4.1oMatrix 500.8 - 13.83.316 - 17oPTC 503.8 - 4.1oMatrix 500.8 - 13.83.316 - 17oPTC 503.8 - 4.1ooMatrix 700.8 - 13.83.316 - 17oPTC 603.8 - 4.1ooMatrix 400.8 - 13.83.316 - 17oPTC 603.8 - 4.1ooMatrix 250.8 - 13.83.316 - 17oPTC 753.8 - 4.1ooMatrix 250.8 - 13.83.316 - 17oPTC 753.8 - 4.1ooMatrix 200.8 - 13.83.316 - 17oMatrix 200.8 - 13.83.3	MIXCSiBCrNiW.0.353.81.69 - 10balOn small areas or die edges, mold castings in the glass ind the glass ind differences0.8 - 13.83.316 - 17balOn small areas or die edges, mold castings in the glass ind the glass ind the glass ind differences0.8 - 13.83.316 - 17balMatrix 600.8 - 13.83.316 - 17.0.8 - 10.8 - 1FTC 403.8 - 4.1Matrix 500.8 - 13.83.316 - 17.0.8 - 1FTC 503.8 - 4.1Matrix 400.8 - 13.83.316 - 17.0.8 - 1FTC 603.8 - 4.1Matrix 400.8 - 13.83.316 - 17Matrix 400.8 - 13.83.316 - 17Matrix 400.8 - 13.83.316 - 17Matrix 400.8 - 13.83.316 - 17	MIXCSiBCrNiW \cdot 0.353.81.69-10bal \cdot 0.353.81.69-10bal \cdot 0.353.81.69-10bal \cdot 0.8-13.83.316-17bal \cdot 0.8-13.83.316-17bal \cdot 0.8-13.83.316-17o.8-1 \cdot 0.8-13.83.316-17o.8-1 \cdot 3.8-4.10.8-1bal \cdot 3.8-4.10.8-1bal \cdot 3.8-4.10.8-1bal \cdot 3.8-4.10.8-1bal \cdot

Mechanical engineering, pump and mill construction, the manufacturing of petrochemical apparatus, deep drilling tools, wear plates in agriculture

Metal- and Flux Cored Tungsten Carbide Wire

DURMAT [®]	TYPICAL APPLICATIONS AND CHEMICAL COMPOSITION	HARDNESS	TYPICAL PROPERTIES		
DIN 8555					
OA	Fe-Matrixwith 50 - 62% FTC	FTC: ≈2360 HV _{0.1} Weld metal:	• Open arc tubular wire filled with Fused Tungsten Carbide for semi-automatic applications, where		
T Fe20 MF 21-65GZ	Tools and machine parts that are exposed to wear in mining, excavation, earth moving, tunneling shields, road construction, well drilling and deep drilling applications)	64-66 HRC _{1st layer} 66-68 HRC _{2nd layer}	extreme abrasive wear is anticipated • For hard facing low alloyed steels that have a maximum of 0.45% carbon		
NICRW	NiCr-Matrix with 50 - 62% FTC	FTC: ≈2360 HV _{0.1}	 Similar to DURMAT[®] NIFD, but containing a higher chrome content Low melting range (900 - 1050°C) 		
T Fe20 MF 21-65GZ	Protects surfaces against a combination of extreme abrasive and corrosive attacks	Matrix: 490-540 HV _{0.1}	 Highly resistant to acids, bases and other corrosive media 		
NIFD	Ni-Matrix with 50 - 62% FTC	FTC: ≈2360 HV	 Flux cored wire with Fused Tungsten Carbide and NiCrBSi- matrix for semi-automatic welding application 		
T Ni20 MF 21-55-CGTZ	Repairing and hard facing ferritic and austenitic steel tools and machine parts (steel casting). Welding on tool joints and stabilizers in the petroleum industry	Prc. ~2300 mv _{0.1}	 Protects surfaces against a combination of extreme abrasive and corrosive attacks 		
NIFD - PLUS	Ni-Matrix with 50 - 63% SFTC	sftc: ≈3000 HV ₀₁	 Similar to DURMAT[®] NIFD, but filled with Spherical 		
T Ni20 MF21-55-CGZ	Repairing and hard facing ferritic and austenitic steel tools and machine parts (steel casting). Specially developed for semi and fully automatic welding on tool joints and stabilizers in the petroleum industry	511C 5000 11V _{0.1}	Fused Tungsten Carbide		
NI2	Ni-Matrix with 50 - 62% FTC and Special Carbides	FTC: ≈2360 HV _{0.1} Matrix: ≈ 450-480 HV _{0.1}	 Cored metal wire filled with a combination of very hard special carbides together with fused tungsten 		
T Ni20 MF21-55-CGZ	Protects surfaces against a combination of extreme abrasive and corrosive attacks	Matrix: ~ 450-480 HV _{0.1} Other Carbides: $\approx 2900 \text{ HV}_{0.1}$	carbides and Ni-Cr-B-Si for semi-automatic welding		
NI2 - PLUS	Ni-Matrix with 50 - 62% SFTC and Special Carbides	SFTC: ≈3,000 HV _{0.1} Matrix: ≈ 450-480 HV _{0.1}	 Similar to DURMAT[®] NI2, but filled with Spherical 		
T Ni20 MF21-55-CGZ	Protects surfaces against a combination of extreme abrasive and corrosive attacks	Other Carbides: $\approx 2900 \text{ HV}_{0.1}$	Fused Tungsten Carbide		
FD 773	NiCr-Matrix with 50 - 62% DNK 1.3	dnk 1,3: >1950 HV _{0.1}	Good corrosion protection against chloride media		
T Ni20 MF 21-55-CGZ	Protection of surfaces against a combination of extreme abrasive and corrosive attacks	Matrix: 490-540 HV _{0.1}	• oood conosion protection against chionide media		
FD 774	Co-Matrix with 50 - 62% DNK 1.3	dnk 1,3: >1950 HV _{0.1}	Good corrosion protection against chloride media		
T Ni20 MF 21-55-CGZ	Protection of surfaces against a combination of extreme abrasive and corrosive attacks	Matrix: 450-480 HV _{0.1}	• Good conosion protection against chiloride media		
FD 778	NiFe-Matrix with 50 - 62% FTC	FTC: ≈2360 HV _{0.1}	 Lower melting point than commonly used iron based Flux Cored Wires with FTC filling 		
T Ni20 MF 21-55-CGZ	Protection of surfaces against a combination of extreme abrasion and corrosion	Matrix: 490-540 HV _{0.1}	 Smooth and clean surface Good resistance to corrosive media 		
FD 779	Ni-Matrix with 50 - 62% MCWC	MCWC: >1630 HV ₀₁	 Resistant against extreme abrasive wear in combination with corrosion 		
T Ni20 MF21-55-CGZ	Protection of surfaces against a combination of extreme abrasion and corrosion	Matrix: 490-540 $HV_{0.1}^{0.1}$	 Low melting range, self fluxing characteristic producing a smooth and clean surface 		
FD 780	NiFe-Matrix with 50 - 62% MCWC	MCWC: >2000 HV _{0.1}	Resistant against a combination of extreme abrasive and corrosive wear		
T Ni20 MF 21-55-CGZ	Protection of surfaces against a combination of extreme abrasion and corrosion	Matrix: 490-540 HV _{0.1}	 Low melting point, self fluxing characteristic producing a smooth and clean surface Good resistance to corrosive media 		
FD 789	Ni-Matrix with 50 - 62% DNK 1.3	DNK 1,3: >1950 HV _{0.1}	Good correction protection against chlorida modia		
T Ni20 MF 21-55-CGZ	Protection of surfaces against a combination of extreme abrasive and corrosive attack	Matrix: 450-480 HV _{0.1}	Good corrosion protection against chloride media		

Flux Cored Wires

Workhardening Austenitic Surfacing

DURMAT®			TYPIC	AL CHEM	TYP	CLASSIF ICAL API MPOSIT	LICATI	ONS	WELD N	/ETAL			HARDNESS	TYPICAL PROPERTIES
Donanti	с	Si	Mn	Cr	Ni	Мо	Co	Nb	v	W	Fe	В	THRU RESS	
FD 200 K	Repair	of manga	anese ste	KNPZ / DII el bucket age parts 19	s and sl	novels, h	igh tens	ile tools -	& dies, c -	lutches, -	crane w bal.	heels, -	180-200 HB When hardened: 400-450 HB	 Stainless, antimagnetic and workhardening. Heat resistant up to 850 °C. Can be applied as a buffer layer.
FD 240 K				P / DIN 859 wing har 4			rossings -	, dredge -	buckets -	, etc. -	bal.	-	200-230 HB When hardened: 400-450 HB	 Austenitic flux cored wire. Designed for repairing worn parts of similar to base materials as well as for hard facing carbon steels parts against severe impact loads.
FD 250 K	Repair	of manga	anese ste	55: MF 7-2 el bucket age parts 14	s and sl			ile tools -	& dies, c 0.2	lutches, -	crane w bal.	heels, -	230-260 HB When hardened: 450-500 HB	 Austenitic flux cored wire of the Mn-Cr-type. High plasticity: can be applied as a buffer layer. Corrosion resistant, antimagnetic, impact-resistant.
FD 270 K				55: MF 7-2 ace seilir 8		-	-	3	-	-	bal.	-	250 HB When hardened: 500 HB	 Ductile austenitic matrix alloy bearing Cr and Nb (Cb) - Carbides. High wear resistance.
FD 295 HY			29-300-СК valves ar 9-11		onents in	n the fiel -	d of hyd 9-11	raulic or -	gas plan -	its -	-	N+	280-300 HB When hardened: 450 HB	 Austenitic matrix. Resistant to corrosion, erosion and cavitation. Hot cracking resistant.

Impact Resistant Coatings

DURMAT®		ci			TYP AICAL CO	KLASSIF PICAL APP OMPOSIT	PLICATIO TON* (W	ONS /t%) OI			5.		HARDNESS	TYPICAL PROPERTIES
	C	Si	Mn	Cr	Ni	Мо	Co	Nb	V	W	Fe	+		
	DIN EN 1	4700: T Fe	1-300-P/	DIN 8555	: MF 1-300	0-P								• Tough and not sensitive to impact loads. The number of
FD 300	Cable r	olls, rails,	couplin	gs, back	up rolls	of caterp	oillars cr	ane whe	el rims, s	shafts, to	ool – join	ts, etc.	280-325 HB	layers is not limited. Forgeable and can be additionally worked with cutting
	0.1	0,5	2	0.5	-	0.3	-	-	-	-	bal.	Ti		tools.
	DIN EN 1	4700: T Fe	7-45-CPT	/ DIN 855	5: MF 9-4	5-CPT								Corrosion and impact resistant, has an excellent
FD 310	Continu	ious cast	ing rolls	, new cla	adding a	nd rewel	ding of a	all types	of hot ro	lling mil	ls and ca	ister.	40-44 HRC	resistance to thermal fatigue. • Heat treatment is possible.
	0.2	1	1	13.5	3.5	1	-	0.2	0.15	-	bal.	-		Tough and can be treated with cutting tools.

DURMAT [®]			ТҮРІС	AL CHEN		KLASSIF PICAL AP OMPOSIT	PLICATI	ONS	F WELD N	METAL			HARDNESS	TYPICAL PROPERTIES
Donanti	с	Si	Mn	Cr	Ni	Мо	Co	Nb	v	w	Fe	+	III III III III III III III III III II	
	DIN EN 1	4700: T Fe	e7-40-CPT	/ DIN 855	55: MF 9-4	0-CPT								
FD 356	Continu	ious cast	ting rolls	, new cla	adding a	nd rewel	ding of a	all types	of hot ro	lling mil	ls and ca	aster.	40-42 HRC	 Corrosion and impact resistant, has an excellent resistance to thermal fatigue. Multiple layers decrease hardness.
	0.1	0.3	0.8	17	4.6	1.1	-	0.2	0.15	-	bal.	-		• Multiple tayers decrease nardness.
	DIN EN 1	4700: T Fe	e1-40-P /	DIN 8555	: MF 1-40	-P								 Low alloyed deposit for hard facing of about 400 HB.
FD 400	Cable ro	olls, rails	, couplir	igs, back	up rolls	of cater	oillar cra	ne whee	el rims.				38-42 HRC	Tough and not sensitive to impact. • Forgeable, can be additionally worked with cutting tools
	0.2	-	-	3	-	0.3	-	-	-	-	bal.	-		
	DIN EN 1	4700: T Fe	e1-45-P / I	DIN 8555:	MF 1-45-I	P								 Low alloyed deposit for hard facing of about 450 HB.
FD 450	Cable ro	olls, rails	, couplir	ıgs, back	up rolls	of cater	pillar cra	ne whee	el rims ar	nd shafts	, etc.		43-45 HRC	Tough and not sensitive to impact. • Forgeable, can be additionally worked with cutting tools
	0.2	-	-	4.5	-	0.6	-	-	0.3	-	bal.	-		· · · · · · · · · · · · · · · · · · ·
	DIN EN 1	4700: T Z	Fe7-50-Cl	PT / DIN 8	555: MF 9	-50-CPT								 High Cr- Ni- Mo- Co- V- W- alloyed flux cored wire. Specially developed for the hardfacing of rolls for hot
FD 476	Casting	rolls.											48 - 50 HRC	rolling. Corrosion and wear resistant. • Resistant to impact loads and continuous rating through
	0.3	0.3	0.8	16	4	1.5	1.5	-	1	1	bal.	-		heat fatigue and high pressure.
FD 495	Hardfac	ing of fo	rging pr			F 3-50-СК ng dies, s		g rolls, p	inch rolls	s, hot str	ip mill t	able	48 - 50 HRC After work	 Stainless weld deposit on Fe, Cr, Co, Mo-basis. High wear resistance at elevated temperatures, high
	rolls and 0.2	d back-u 0.7	p rolls. 0.4	15	-	3.2	14	-	-	-	bal.	-	hardening: 53 HRC	tensile strength, resistance against sliding wear of metallic objects, thermal shock resistance.
	DIN EN 1	4700: T Fe	e3-50-PT /	DIN 8555	5: MF 6-50	-PT								
FD 580	Guiding	rolls, sc	ale-brea	ker rolls	, bloomi	ng- and s	labbing	-mill roll	s hot wo	rking to	ol steels		48 - 52 HRC	 Durable and abrasion resistant. Excellent thermal fatigue properties.
	0.35	0.6	2	6.5	-	1.5	-	-	0.5	1.2	bal.	-		
	DIN EN 1	4700: T Fe	e3-60-PS/	DIN 8555	5: MF 6-60	-P								
FD 600	Parts su dredge			ion, imp	act and	compres	sive load	ds, sand	pumps, o	dredge p	ump arı	ns,	55 - 58 HRC	 Flux core wire which enables a CrMoV alloyed deposit for semi automatic and automatic surfacing. Good resistant
	0.5	1	3	6.5	-	0.8	-	-	0.2	-	bal.	-		to tempering and good crack resistance.
	DIN EN 1	4700: T Fe	e8-60-GP	/ DIN 8555	5: MF 6-60	-GP								Touch and not consitive to impact loads
FD 600 TIC	Roller p	ress, bu	cket teet	h and lip	os, sand	pumps, i	mpeller	s, screws					56 - 58 HRC	 Tough and not sensitive to impact loads. Excellent resistance a combination of impact and abrasion.
	1.8	1.6	1.4	7	-	1.4	-	-	-	-	bal.	Ti: 5		
	DIN EN 1	4700: T Fe	23-60-PST	/ DIN 855	5: MF 6-6	0-PST								
FD 601	Hamme	er and bl	ooming	table rol	ls, blowl	oars and	bucket t	eeth.					56 - 60 HRC	 Excellent properties of resistance to abrasion and impact High heat resistance up to 550°C
	0.5	1	3	6	-	1.6	-	-	1.5	1	bal.	-		
	DIN EN 1	4700: T Fe	20-60-GF	S										 Resistant against heavy abrasion and impact.
FD 605	Mining	equipme	ent, scraj	per blad	es for bri	ick and c	lay, agri	culture, f	fans.				55 - 60 HRC	 High tenacity. Precipitation of fine special carbides (SC).
	0.5	-	-	6	-	1.3	-	-	-	-	bal.	SC: 12		,

Flux Cored Wires

DURMAT®			ТҮРІС	AL CHEM	TYP	ICAL API	ICATION PLICATIO TON* (W	ONS	WELDI	METAL			HARDNESS	TYPICAL PROPERTIES
	с	Si	Mn	Cr	Ni	Мо	Co	Nb	V	W	Fe	+		
	DIN EN 1	4700: T Z	Fe6-55-C	GPT / DIN 8	8555: MF 6	-55-GPT								Ferritic-martensitic micro structure.
FD 609				nmers, ro In-Hadfie		essing sh	redders,	cutting-	tools, fl	uid valve	es and		55 - 57 HRC	 High resistance against impact stress and medium abrasion. Crack free in multiple layers.
	0.5	2.8	0.8	9.5	0.3	-	-	-	-	-	bal.	-		• Can be used up to 700 ° C.
	DIN EN 1	4700: T Z	Fe8-50-C	GP/ DIN 85	555: MF 6-	50-RPS								
FD 615	Screw o	il press,	screw co	onveyors,	, clay ind	ustry, pl	astics in	dustry.					48-52 HRC	 High chromium alloyed flux-cored wire for high wear and corrosion resistance. Rust and corrosion resistance equivalent to a 17% Cr steel.
	0.5	-	-	17-18	0.6	1.3	-	-	-	-	bal.	SC: 16		equivalent to a 11% CI steet.
	DIN EN 1	4700: T Z	Fe6 / DIN	8555: MF (6-60-GPS									 Resistant against heavy abrasion and impact
FD 629	Mining	equipme	ent, scra	per blade	es for brid	ck and cl	lay, tech	nical knif	ies, agri	culture,	fans.		58 - 63 HRC	 Precipitation of fine special carbides (SC)
	0.6	-	-	7	-	3	-	-	-	-	bal.	SC: 20		Extreme hardness and high tenacity
	DIN EN 1	4700: T Z	Fe13-60-0	GPT / DIN 8	3555: MF 6	-65-GPT								Martensitic weld material with embedded Cr- V- Mo-
FD 710				nerals, dr feed scre					ls, mou	lds for th	ne ceram	ic/brick	62 - 65 HRC	 carbides. High hardness and is crack resistant, further resistant to abrasive wear at medium impact, creep resistant up to
	1.4	1	1	8	-	1	-	-	1	-	bal.	B:1		500 °C.
	DIN EN 1	4700: T Fe	e8-55-GP	/ DIN 8555	: MF 6-55-	GP								Martensitic with embedded Nb- carbides.
FD 760	Cement	and cru	sher roll	ls / hamn	ners, bric	quetting	plants, c	eramic i	ndustry				55 - 57 HRC	 Martensitic with embedded ND- carbides. High resistance to pressure, crack resistant. Additional resistance to abrasion wear.
	1.4	0.7	1.3	7	-	0.8	-	8	1	1.2	bal.	-		resistance to abrasion wear.

Abrasion Resistant Hardfacing

DURMAT®			TYPIC	AL CHEN	TYP	KLASSIF ICAL API MPOSIT	PLICATI	ONS	- WELD I	METAL			HARDNESS	TYPICAL PROPERTIES
DORMAT	с	Si	Mn	Cr	Ni	Мо	Co	Nb	V	W	Fe	+	HARDNESS	
	DIN EN 1	4700: T Fe	14-45-CG	T / DIN 85	55: MF 10	-45-CGT								 Resistant to wear and corrosion. Used at any place, where corrosive and abrasive wear is
FD 42		ly used i mical inc		at proce	ssing an	d food ir	idustry f	or veget	able oil e	extrusion	n presses	and in	41 - 44 HRC	expected. • Hardfacing of welding material is possible without
	1.8	0.9	1.2	28	3	0.8	-	-	-	-	bal.	-		cracking.Can be additionally worked with metalloid cutting tools.
	DIN EN 1	4700: T Z	Fe14-50-0	GP / DIN 8	555: MF 10)-50-GP								 Resistant to abrasion and medium impact.
FD 50	Excavat	er teeth,	mixer b	lades, co	nveying	screws a	and othe	rs.					50 - 54 HRC	Best results by welding in two layers. Cannot be heat treated, machined or forged.
	3.2	1.8	1.8	15	-	-	-	-	-	-	bal.	-		- cannot be near treated, machined of forged.
		4700: T Z												• Excellent resistance to abrasion and medium impact up
FD 51		rushing, s, fan-bla			nents , c	onveyer	screws,	pumps, r	nixer pa	rts, shov	el-bucke	ets,	58 - 59 HRC	to 450°C. • Best results by welding in two layers. Cannot be heat
	4.5	0.8	0.8	25	-	-	-	-	-	-	bal.	B: 0.8		treated, machined or forged.
	DIN EN 1	4700: T Fe	214-60-CG	/ DIN 855	5: MF 10-	60-CGT								
FD 53 ES	Oil pres	s screw,	screw co	onveyors	, extrude	er screws							58 - 62 HRC	High-alloyed flux-cored wire with high matrix hardness.High abrasion and corrosion resistance.
	3.8	1.2	-	32	0.5	0.4	-	-	1	-	bal.	-		
	DIN EN 1	4700: T Z	Fe14-60-0	5 / DIN 855	55: MF 10-	60-GR								Stainless weld metal with excellent resistance to abrasion
FD 55	Piping,	impeller	s and sci	rews, etc	-								55 - 59 HRC	and medium impact. • Best results by welding in two layers.
	4.8	1.2	0.6	29	-	-	-	-	-	-	bal.	-		Cannot be heat treated, machined or forged.
		4700: T Z												 Stainless weld metal with excellent resistance to abrasion and medium impact.
FD 55 Mo	Bucket	teeth an	d lips, sa	ind pum	ps (wet s		sible), ca	atalyst pi	ping, im	pellers a		VS.	57 - 60 HRC	 Higher warm strength of the deposit in comparison to DURMAT[®] FD 55.
	5	1.2	0.4	28	-	1.3	-	-	-	-	bal.	-		Cannot be heat treated, machined or forged.

DURMAT®			ТҮРІС	AL CHEI		ICAL AP	ICATION PLICATIO TION* (W	ONS	WELD	METAL			HARDNESS	TYPICAL PROPERTIES
	С	Si	Mn	Cr	Ni	Мо	Co	Nb	v	W	Fe	+		
FD 56		4700: T Z ates, fan 1		5 / DIN 85 32	55: MF 10-	60-G -	-	-	-	-	bal.	-	58 - 60 HRC	 Self shielding flux cored wire. Specifically made for overlaying parts which are exposed to very extreme abrasive mineral wear related to the high amount of hard phasing. Corrosion resistant.
FD 56 Mo		4700: T Z ates, fan 1		G / DIN 85	55: MF 10-	65-GR 0.7	_	_	_	_	bal.	_	60 - 64 HRC	 High C, Cr + Mo alloyed self shielding flux core wire. Resistant to strong abrasive wear by mineral substances, rust resistant. Impact and shock sensitive.
FD 59		g, gravel			5: MF 10-60 nixer pac		ncrete p	umps, co -	onveyor : -	screws, i -	impeller bal.	screws,	59 - 61 HRC	 Highly C- Cr - alloyed flux- cored wire for applications in high mineral wear. Suitable for hard facing of parts that are exposed to high abrasion in wet areas.
FD 59 L					55: MF 10-1 ps, mixer -		onveyer -	screws, I	mixer pa -	iddles, o -	oil screws bal.	, etc. -	57 - 59 HRC	 Highly C- Cr- Mo alloyed flux- cored wire for applications in high mineral wear with a corrosion resistant matrix. Hardfacing of parts that are exposed to high abrasion and minor corrosion. Crack free welding is possible.
FD 59 XL					555: MF 10 ps, mixer 3		onveyer -	screws, I	mixer pa -	iddles, o -	oil screws bal.	, etc. -	50 - 53 HRC	 Highly C- Cr- Mo- Ni alloyed flux- cored wire for applications in high mineral wear with a corrosion resistant matrix. Hard facing of parts that are exposed to high abrasion and minor corrosion. Crack free welding is possible.
FD 60					5: MF 10-60 , cement -		ieral ind	ustries. 7	-	-	bal.	-	61 - 63 HRC	 Flux core wire for hardfacing particularly for extreme abrasive wear. Free of slag, weldability is excellent. Best results by welding in two layers. Cannot be heat treated, machined or forged.
FD 61					55: MF 10- , cement -		ieral indi	ustries. 7	_	-	bal.	B:1	62 - 65 HRC	 Flux core wire for hardfacing particularly for extreme abrasive wear. Free of slag, weldability is excellent. Best results by welding in two layers. Cannot be heat treated, machined or forged.
FD 62	Wear pl		ked rolle	·	55: MF 10- ent and c		pumps, o	dredging 3	; teeth, s -	lag brea -	ikers, coł bal.	e oven	60 - 63 HRC	 Specifically made for verlaying parts which are exposed to very extreme abrasive mineral wear related to the high amount of hard phases.
FD 64	Cement		/, minera	al and bi	55: MF 10-4 rick indu: -		ing indu	stry and -	parts su 0.8	bject to 0.8	heavy w bal.	ear in B: 1	63 - 65 HRC 400°C: 58 HRC 600°C: 48 HRC	 Resistant to heavy mineral abrasion at elevated temperature.
FD 65					555: MF 10 reens an -		sinter w -	heel brea	akers, sr 1	nelter lo 2	oading ch bal.	utes,	63 - 65 HRC 400°C: 62 HRC 600°C: 59 HRC 800°C: 53 HRC	 Resistant to extreme abrasive wear even at elevated temperatures. Free of slag, weldability is excellent Ledeburitic structure with many different carbide types Best results by welding in two layers, can't be heat treated, machined or forged
FD 67					55: MF 10-1 ing equip -		ement a	nd miner	ral indus 10	stries.	bal.		64 - 67 HRC	 Designed for extreme abrasive wear and moderate impact. Free of slag. Weldability is excellent.
FD 68					555: MF 10 reens an -		sinter w -	heel brea	akers, sr -	nelter lo -	oading ch bal.	utes, B: 2		 Ledeburitic structure with a high amount of different hard phases. Free of slag. Resistant to extreme abrasive wear at elevated temperatures. Cannot be heat treated, machined or forged.
FD 69	DIN EN 1	4700: T Fe	16-65-GZ		55: MF 10-1 crapers, -		-	5.8		-	bal.	B: 1.8	64 - 67 HRC	 Resistant to extreme abrasive wear up to 800 °C. Ledeburitic structure containing a high amount of different hard phases. Free of slag, the weldability is excellent. Best results welding in two layers. Cannot be heat-treated, machined or forged.

Flux Cored Wires

DURMAT [®]			TYPIC	AL CHEN		KLASSIF ICAL AP MPOSIT	PLICATI	ONS	WELD	/ETAL			HARDNESS	TYPICAL PROPERTIES
DORMAT	С	Si	Mn	Cr	Ni	Мо	Co	Nb	v	W	Fe	+	HARDNESS	
	DIN EN 14	700: T Fe	16-65-G /	DIN 8555	6: MF 10-65	5-G								
FD 70	Steel, co	al, ceme	ent and r	mineral i	industry.								62 - 64 HRC	High C-, Cr-, V-alloyed flux core wire against high abrasive wear
	5.2	1	0.4	27	-	-	-	-	6	-	bal.	-		Not machinable
	DIN EN 14	700: T Fe	16-65-GZ	/ DIN 855	5: MF 10-6	65-GZ								• High C-, Cr-, Nb-, Mo-, W-, V-alloyed flux-cored
FD 75	Slag con	veyer so	rews, ho	ot sinter	breaker.								600°C: 58 HRC	wire electrode for mineral wear and use at higher temperatures.
	5.2	1.2	0.6	22	6.4	4.5	-	-	0.8	1.4	bal.	-	700°C: 55 HRC	 Hardness reduction at a temperature of 400°C is approximately 6% and at 600°C approximately 10%.
	DIN EN 14	700:T Fe	16-70-G /	DIN 8555	: MF 10-70)-G								C-, Cr-, V-, Nb-alloyed flux core wire against extreme
FD 78	Sinter pl	ants, lig	nite min	ing mac	hines, gr	ravel ind	ustry, ch	ains, clir	ıker indu	istry, co	ncrete p	umps.	64 - 68 HRC	mineral wear. High scratch hardness. Best results by welding in two
	5	1.3	0.5	16	-	-	-	6.5	6.5	-	bal.	B: 1.2		layers. • Cannot be heat-treated, machined or forged.
	DIN EN 14	700: T Fe	16-70-G /	DIN 8555	5: MF 10-70	D-G								
FD 79	Sand an mineral	d concre processi	ete pump ing and v	os, mixe waste br	r blades, eakers.	mixers,	screw co	nveyors	, mining,	cement	tindustr	у,	64 - 68 HRC	 Resistant to abrasion by the highest mineral wear. Slag-free with excellent weldability.
	5	1	-	21	-	-	-	6	2.5	-	bal.	B: 1.3		
	DIN EN 14	700: T Fe	14-60-CG	/ DIN 855	5: MF 10-6	65-GR								
FD 164	Wear pla	ites, fan	s, machi	nable, N	II-Hard IV	/, etc.							60 - 64 HRC	 Suitable for application to parts subject to severe abrasive wear with exposed mineral substances. Resistant corosion.
	5.3	1.2	-	28	-	-	-	-	-	-	-	Zr: 0.35		• Resistant corosion.
	DIN EN 14	700: T Fe	13-65-G											Low alloyed flux core wire.
FD 720	Dredges	, concre	te pump	s, drivin	g screws	, fine pa	rticle we	aring pa	rts.				64 - 66 HRC	• Suitable for parts subject to impact, metal to metal friction and severe fine particle abrasion and erosion
	0.7	1	2	-	2	-	-	-	-	-	bal.	B: 4.5		load.
	DIN EN 14	700: T Z I	Fe8											 Flux cored wire with alloyed Fe-B-Cr-weld metal with a martensitic carbide structure.
FD 721	Feed scr	ews, sar	nd prepa	ration p	lants, we	ear plate	s, ceram	ic indust	ry				64 - 66 HRC	 Suitable for highly abrasion resistant hardfacings that are exposed to minor impact and high wear at temperatures
	1.5	1	2	16	-	-	-	-	-	-	bal.	B: 3.5		of up to 450°C.
	DIN EN 14	700: T Z I	Fe12-70-0	5 / DIN 85	55: MF 10-	70-GT								 Contains very fine grained extremely hard chrome- carbides and niobium-carbides.
FD 733	Parts wi	th high a	abrasive	and ero	sive load	superpo	osed by o	corrosive	attack.				66 - 68 HRC	 Suitable for hardfacing on parts requiring high abrasion resistance, minor impact resistance and wear resistance
	3.5	1	1	18	-	-	-	4	-	-	bal.	B: 1.4		up to a working temperature of approx. 450 °C.
	DIN EN 14	700: T Fe	16-70-CG											 Iron based flux cored wire containing complex carbide
FD 739	Parts wi	th high a	abrasive	and ero	sive load	superpo	osed by o	corrosive	attack.				67 - 70 HRC	phases which are precipitated more fine than in common used hardfacings.
	1	-	-	20	-	3.3	-	3.4	-	5.7	bal.	B: 4.4		Better resistance against abrasive and erosive load.
	DIN EN 14	700: T Fe	16-65-CG											Iron based flux cored wire containing complex carbide
	Parts wit	th high a	abrasive	and eros	sive load	superpo	osed by o	corrosive	attack.				65 - 68 HRC	phases which are precipitated more fine than in common used hardfacings.
FD 740	i arts wi	0												used fidfuldcings.

Hot Forging Molds

DURMAT®			ТҮРІС	AL CHEN	TYP	KLASSIF ICAL API DMPOST	PLICATIO	ONS	WELDN	IETAL			HARDNESS	TYPICAL PROPERTIES
	с	Si	Mn	Cr	Ni	Мо	Co	Nb	v	W	Fe	+		
	Special a	alloy												
FD 812	Repair o	of drop-1	orge die	s.									38 - 44 HRC	Thermal shock resistant. Highly heat resistant. Tracilla store atta: 1200_1400 N/mm²
	0.1	0.5	0.6	10	1	2	-	-	-	-	bal.	Ti: 0.2		Tensile strength: 1200 - 1400 N/mm ² .
	Special a	alloy												Thermal shock resistant.
FD 813	Repair o	of drop-1	orge die	s.									41 - 47 HRC	 Highly heat resistant. Tensile strength: 1300 - 1500 N/mm².
	0.12	0.6	0.6	10	1.7	3	-	-	-	-	bal.	Ti: 0.2		• Tensile strength, 1500 - 1500 Within .
	Special a	alloy												Thermal shock resistant.
FD 814	Repair o	of drop-1	orge die	s.									44 - 48 HRC	 Highly heat resistant. Tensile strength: 1400 - 1600 N/mm².
	0.2	0.6	0.6	10	1.7	3	-	-	-	-	bal.	Ti: 0.2		· Tensile suengui. 1400 - 1000 Millini .
	Special a	alloy												Thermal shock resistant.
FD 816	Repair o	of drop-t	orge die	s.									48 - 53 HRC	 Highly heat resistant. Tensile strength: 1600 - 1800 N/mm².
	0.28	0.7	0.6	10	1.7	3	-	-	-	-	bal.	Ti: 0.2		
	Special a	alloy												Thermal shock resistant.
FD 818	Repair o	of drop-1	orge die	s.									52 - 55 HRC	 Highly heat resistant. Tensile strength: 1800 - 2000 N/mm².
	0.36	0.7	0.6	10	1.7	3	-	-	0.3	2	bal.	Ti: 0.2		, , ,
	Special a	alloy												Thermal shock resistant.
FD 862	Repair o	of drop-i	orge die	s.									34 - 40 HRC	 Highly heat resistant. Tensile strength: 1100 - 1300 N/mm².
	0.15	0.7	0.6	4.5	-	1	-	-	0.2	1	bal.	-		, , ,
	Special a	alloy												Thermal shock resistant.
FD 864	Repair o	of drop-i	orge die	s.									44 - 48 HRC	 Highly heat resistant. Tensile strength: 1400 - 1600 N/mm².
	0.25	0.7	0.6	5	-	1.5	-	-	0.4	1.4	bal.	Ti: 0.2		
	Special a	alloy												Thermal shock resistant.
FD 866	Repair o	of drop-1	orge die	s.									48 - 52 HRC	 Highly heat resistant. Tensile strength: 1600 - 1800 N/mm².
	0.3	0.7	0.6	5.5	-	2.5	-	-	0.6	2.4	bal.	Ti: 0.2		
	Special a	alloy												Thermal shock resistant.
FD 868	Repair o	of drop-1	orge die	s.									52 - 55 HRC	 Highly heat resistant. Tensile strength: 1800 - 2000 N/mm².
	0.4	0.8	0.6	6	-	3	-	-	0.7	3	bal.	Ti: 0.2		0,

Tool Steel

DURMAT®			TYPIC	AL CHEM	TYP	KLASSIF ICAL API OMPOSI	LICATI		F WELD	METAL			HARDNESS	TYPICAL PROPERTIES
	с	Si	Mn	Cr	Ni	Мо	Co	Nb	V	W	Fe	+		
FD WZ 50 1.2567	Slab she	ears, hot	-forging	dies, hot	55: MF 3-5 t shear bl impact s -	lades, dr	awing d -	ies, crusł -	ning equ 0.6	ipment 4.5	and dep bal.	ressions -	48 - 50 HRC After heat treatment: 50 - 52 HRC	 C-Cr-V-W-alloyed flux core wire. Suitable for repair and build-up applications on hot working steels of Similar to or lower alloyed hot working tools, machinable. Retention of hardness up to 550°C.
FD WZ 55 ~1.2662	Slab she	ears, hot	-forging	dies, hot	55: MF 3-5 t shear bl impact s	lades, dr	awing d	ies, crusł	ning equ	ipment	and dep	ressions	53 - 56 HRC After heat treatment:	 Air hardening and wear resistant alloy. Can be applied to reclaim hot-forging dies and to overlay the edges and flat areas of low alloyed high density steel
	0.35	0.8	1.2	3	-	-	2	-	0.5	7	bal.	-	57 - 59 HRC	tools.
FD WZ 57	Slab she	ears, hot	-forging	dies, hot				es, conta is.	iiners, cr	ushing e	equipme	nt and	50 - 53 HRC After heat treatment:	 Air hardening and wear resistant alloy. Can be applied to reclaim hot-forging dies and to overlay the edges and flat areas of low alloyed high density steel
	0.35	0.8	0.8	13	-	2.2	10	-	0.25	5.5	bal.	-	55 - 59 HRC	tools.
					55: MF 4-5									Wear and heat resistant.
FD WZ 59			air and n		ure of ho		ld worki	ng tools,	, stamps			s, etc.	57 - 59 HRC	Retention of hardness up to 550°C.
	0.6	0.6	-	5 DIN SEEE	-	3.5	-	-	-	3.5	bal.	-		
FD WZ 60					: MF 4-60-		ing dies	press m	andrils				After air cooling:	 Air hardening and wear resistant alloy. Can be applied as high-temperature wear resistant
1.3346	0.8	0.6	0.4	4.5	-	8	-	-	1.5	2	bal.	-	58 - 60 HRC	hardfacing on low alloyed high density steel tools.
FD 14/7	Special A	lloy											41-43 HRC	
FD WZ 6356 1.6356	Al-dieca	isting mo	old, Al-eo	dge tools	and she	aring to	ols.						After heat treatment:	Hardness increase by artificial aging.
2.0000	0.03	-	-	-	18	4	12	-	-	-	-	Ti+	53-56 HRC	

Cobalt Base Alloys

DURMAT®			TYPIC	AL CHEM	TYP	KLASSIF ICAL API MPOSIT	PLICATIO	ONS	WELD I	METAL			HARDNESS	TYPICAL PROPERTIES
DORMAT	с	Si	Mn	Cr	Ni	Мо	Co	Nb	V	W	Fe	+	HARDNE35	ITPICAL PROPERTIES
	DIN EN 1	4700: T Co	o3 / DIN 85	555: MF 20)-55-CGT2	2								Austenitic-ledeburitic structure.
DUROLIT 1	Wear pa	ıds, rotaı	ry seal rii	ngs, pun	np sleev	es; centre	e less gri	nder wo	rk rests,	etc.			600°C: 44 HRC	Great resistance to corrosion, reducing acids, impact, extreme wear and temperature shocks .
	2.4	0.7	0.4	29	-	-	bal.	-	-	12	<3	-		 Only machinable by grinding. Tensile strength: 630 N/mm².

DURMAT®			ТҮРІС	AL CHEN	TYP	ICAL AP	ICATION PLICATIO TION* (W	ONS	WELD	METAL			HARDNESS	TYPICAL PROPERTIES
DOMMIT	с	Si	Mn	Cr	Ni	Мо	Co	Nb	v	w	Fe	+	Th and the second	
DUDOUT				555: MF 2		a a allia a		l			hladaa		40 - 43 HRC	 Austenitic-ledeburitic structure. Great resistance to corrosion, reducing acids, impact,
DUROLIT 6				ves, equi uids, etc 27		landling	not stee bal.	l such as	tong bi	s, snear	<3	pumps		extreme wear and temperature shocks. • Machinable by hard faced tools. • Tensile strength: 900 N/mm ² .
		_			-	-	Dal.	-	-	4.5	~3	-		
DUROLIT 6 LC	Abrasio surfaces	n, erosio s, chemi	n, corro cal indus	stry, hot	itation a		ves, etc.	ires, pun	nps, extr			aring	36 - 39 HRC	 Austenitic structure bearing chrome and tungsten carbides. Resistant to high corrosion and abrasion, high impact stress and extreme temperature shocks.
	0.8	1	0.8	28	-	-	bal.	-	-	4.5	<3	-		Machinable by hard metal tools.
DUROLIT 6 HC	Steam a	and chen	nical val	555: MF 2 ves, equi uids, etc	ipment h	andling	hot stee	l such as	tong bit	ts, shear	blades,	pumps	43 - 46 HRC	 Austenitic structure bearing chrome and tungsten carbides. Resistant to high corrosion and abrasion, high impact stress and extreme temperature shocks.
	1.3	1	0.8	29	-	-	bal.	-	-	4.5	<3	-		Machinable by hard metal tools.
	DIN EN 1	4700: T Co	o3 / DIN 8	555: MF 2	0-50 CTZ									 Austenitic-ledeburitic structure. Improved wear resistance compared to DUROLIT 6, used
DUROLIT 12	Cutting industry		f long kn	ifes and	other to	ols used	in the w	ood, pla	stic, pap	er, carpe	et and ch	emical	300°C: 37 HRC	 Imploved wear resistance compared to boroch 10, used for applications exposed to reduced mechanical shock. Machinable by hard faced tools.
	1.4	0.8	0.6	29	-	-	bal.	-	-	8	<3	-	000 0.521110	Tensile strength: 850 N/mm ² .
			,	555: MF 2									30 HRC	 Cobalt alloy with the highest corrosion and thermal
DUROLIT 21				exposed e chemio			ures, co	rrosion a	ind impa	act stress	s, such a	s valve	After work hardening:	 resistance of all cobalt-base alloys Machineable.
	0.25	0.8	0.8	27	2.5	5.5	bal.	-	-	-	<3	-	45 HRC	
			,	8555: MF										 Contains approximately 10.5% nickel for matrix stability during elevated temperature service.
DUROLIT 25	Hot forg types of 0.1			charger ipact, pr 20					erating t	emperat 15	ures wit <3	h all	250 - 280 HB	 Resistant to hot corrosion, impact, wear and extreme temperature shocks and oxidation. Machinable by hard faced tools.
	Sonderle	gierung												
DUROLIT			extrusion	n screw, I	rock drill	bits, we	ar rings.	etc.					48 HRC	• Corrosion resistant in reducing acids .
712	1.8	0.5	0.5	29	<3	9	bal.	-	-	-	<3	-		High wear resistance.

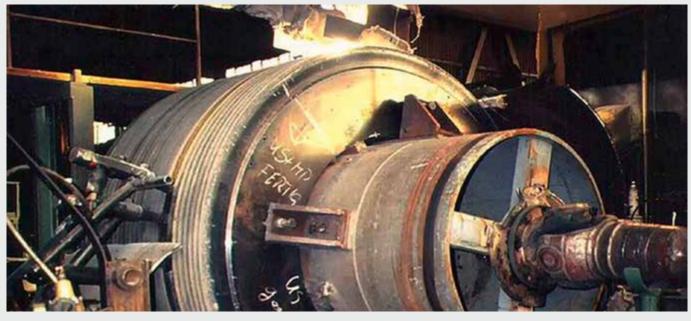
Nickel Base Alloys

DURMAT®			TYPIC.	AL CHEM	TYP	CLASSIF ICAL AP MPOSIT	PLICATI	-	WELD	METAL			HARDNESS	TYPICAL PROPERTIES
DORMAT	С	Si	Mn	Cr	Ni	Мо	Co	Nb	V	W	Fe	+	HARDNE35	I FIGAL PROPERTIES
	DIN EN 14	4700: T Ni	2-40-CKP	TZ / DIN 8	555: MF 2	3-40-CKP	TZ						32 - 35 HRC	 CrCoMoTiAlW-alloyed nickel based weld metal. Designed for gas shielded welding with pure Argon.
DUROLOY 520W	Critical	high terr	peratur	e applica	itions lik	e hot for	ging die	s or hot s	hear bla	ades.			Aftre work hardening:	 Precipitation hardenable alloy with an exceptional
	0.05	-	-	19	bal.	6	10	-	0.3	5	-	Ti: 3 Al: 2	45 HRC	combination of high temperature mechanical property, forgeability and corrosion resistance. Crack free.

Flux Cored Wires

DURMAT®		CLASSIFICATION TYPICAL APPLICATIONS TYPICAL CHEMICAL COMPOSITION* (Wt%) OF WELD METAL										HARDNESS	TYPICAL PROPERTIES				
	с	Si	Mn	Cr	Ni	Мо	Co	Nb	V	W	Fe	+					
	DIN EN 1	4700: T N	li2-40-CKF	PTZ / DIN	8555: MF 2	3-40-CKP	TZ										
DUROLOY 521 W	Armor	ofhamm	ner saddl	es									190 HB • High-temperature hardness and heat resistance. • Good corrosion resistance and wear resistance.				
	0.06	0.06 19 bal. 6 11.5 0.8 - ^{Ti: 3} Al: 2															
	Ni Cr 20	Mo 9 Nb /	E Ni Cr M	o 3										• Ni- based flux cored wire for the shielded gas welding			
625	Chemic metals.	Chemical industry, furnace parts. Also suitable in freezing temperatures as well as cold hardened								dened	application. • High resistance against many corrosive mediums	High resistance against many corrosive mediums,					
2.4621	0.05	0.3	0.5	22	bal.	9	-	3.5	-	-	<3	-		pittings, tension cracking and gap corrosion, high scaling resistance and heat hardening treatment.			
	DIN EN 1	DIN EN 14700: T NI2-250-CKNPT / DIN 8555: MF 23-250-CKNPTZ										260 - 280 HB	 Applied by shielded arc welding, resulting in a heat and wear resistant hard facing. 				
	Hardfad	cing on f	orging d	ies and o	other hot	working	tools.						After work • Resistant to oxidation, reduction and other corrosiv hardening: media.				
2.4887	0.08	-	-	16	bal.	16	2.5	-	0.3	4.5	<5	-	420 HB	 High resistance to impact and pressure load and even at elevated temperature. 			
	DIN EN 1	DIN EN 14700: T Ni1-60CGTZ / DIN 8555: MF 22-60-CGTZ												Nickel based alloy deposit with properties like those of its			
DUROLOY SE 1/58	Chemic	Chemical, automobile and food industry along with nuclear technology.												Stellite counterpart with good hardness, heat resistance, temperature shock resistance, corrosion and wear			
,	0.75	4.7	-	20	bal.	-	-	-	-	-	<5	B: 3.2		resistance.			
	DIN EN 1	.4700: T N	li1-40CGT	Z / DIN 85	55: MF 22-	40-CGTZ											
DUROLOY SE 6/40	Chemic	al, auto	mobile a	nd food	industry	along wi	ith nucle	ar techn	ology.					Hot hardness, temperature shock resistance and			
, .	0.35	4.5	-	22	bal.	-	-	-	-	2	<5	B: 1.6		corrosion and wear resistance.			
	DIN EN 1	.4700: Ti I	Ni1-50ZGT	C / DIN 85	555: MF 22-	-50-CGTZ											
DUROLOY SE 12/50	Chemic	al indus	try, nucl	ear tech	nology fie	eld, etc.							48 - 52 HRC	High hot hardness, corrosion resistance, heat resistance, wear resistance and thermal shock constancy.			
,	0.6	4.9	-	21	bal.	2.5	-	-	-	-	<5	B: 2.8		,			
	DIN EN 1	.4700: T N	li1-35-CGT	Z / DIN 85	555: MF 22	-35-CGTZ											
DUROLOY SE 21/35	Chemical, automobile and food industries along with nuclear technology.								34 - 36 HRC	High hot hardness, corrosion resistance, heat resistance, wear resistance and thermal shock constancy.							
	0.4	4.5	-	20	bal.	2	-	-	-	-	<4	B: 0.7					
	DIN EN 14700: T NI 1-55CGTZ / DIN 8555: MF 22-55-CGTZ																
DUROLOY SE 56	Oil pres	il press screw, chemical industry.												 High hot hardness, corrosion resistance, heat resistance, wear resistance and thermal shock constancy. 			
	0.65	4.6	0.2	21	bal.	2.5	-	-	-	-	-	B: 2.9		wear resistance and thermal shock constancy.			

Stellite Replacement Alloys


DUDMAT®			TYPIC	AL CHEN		OMPOSIT PICAL AP			WELD	METAL				TYPICAL PROPERTIES
DURMAT®	С	Si	Mn	Cr	Ni	Мо	Co	Nb	V	W	Fe	+	HARDNESS	ITPICAL PROPERTIES
SER	0.1	3.5-5.5	4.5-6.0	18-20	8-9	3.5-5.5	-	0.8-1.2	-	-	bal.	-		
SER 1													52-57 HRC	
SER 6				Cobalt-free alloys in the nuclear field; inserts at high surface pressures with a low coefficient of friction; valves, guides, slideways									40-44 HRC	 Ferritic-austenitic microstructure. High contentof ferrite and ETA phases. With DURMAT [®] DUROLIT alloys comparable properties.
SER 12			pre										45-50 HRC	 Cavitation, corrosion, erosion resistant. Impact and thermal shock resistant. Heat resistant up to 600 ° C.
SER 21													280-350 HV _{0.1}	

Cast Iron Welding

DURMAT®		KLASSIFIZIERUNG TYPICAL APPLICATIONS TYPICAL CHEMICAL COMPOSITION* (Wt%) OF WELD METAL												TYPICAL PROPERTIES
DORMAT	C Si Mn Cr Ni Mo Co Nb V W Fe +										HARDNESS			
	·	pecial alloy												 Flux cored wire electrode for welding cast iron, joining steel and cast iron and cast cavity welding. Extremely low coefficient of thermal expansion.
FD NiFe36 1.3912	Joint w	oint welding and repair welding of cast iron, centrifugally cast, malleable cast iron etc.												
	0.1	0.1 1 3 - 36 bal											• Machinable.	
	Special a	Special alloy												Mieles allowed incode and to be device
DUROLOY NiFe	Joining	ning and repairing on nearly all types of cast iron											160 - 190 HB	 Nickel alloyed iron based tubular wire. Suitable for grey cast iron parts and spherolitic cast iron.
60/40	<0.5	:0.5 <1 4 - bal 40 Cu+												Machinable.

Build-Up Wires

DURMAT®		KLASSIFICATION TYPICAL APPLICATIONS TYPICAL CHEMICAL COMPOSITION* (Wt%) OF WELD METAL												TYPICAL PROPERTIES
DORMAT	с	Si	Mn	Cr	Ni	Мо	Co	Nb	V	w	Fe	+	HARDNESS	
	DIN EN 14700: T Fe1-300-P / DIN 8555: MF 1-300-P									280 HV ₃₀	• Suitable for medium alloyed steels, that are considered to be hard to weld; for high tensile steel, heat treatable			
FD CROMO 1	Tool ste	ool steel, armour steel, crane pulley wheels, transport-rollers, moulds or dies , built up welding								lding.	Tensile strength:	hard facing and designed for build up welding on worn- out parts.		
	0,1	0,5	1	1,3	-	0,6	-	-	-	-	bal.	-	≈680 N/mm ²	 Very high crack resistance, highly resistant against impact and pressure wear.
	DIN EN 14	1700: T Fe	1-350-P/	DIN 8555	: MF 1-350)-P							≈300 HV ₃₀	• Suitable for medium alloyed steels, that are considered to be hard to weld; for high tensile steel, heat treatable
FD CROMO 2	Tool ste	el, armo	ur steel,	crane pi	ulley whe	eels, trar	nsport-ro	ollers, mo	ould or a	dies, buil	t-up wel	ding.	Tensile strength:	hard facing and designed for build up welding on worn- out parts.
	0,10	0,4	1,2	2,4	-	0,8	-	-	-	-	bal.	-	≈700 N/mm ²	 Very high crack resistance, highly resistant against impact and pressure wear.
FD	DIN EN 14700: T Fe13-300-P / DIN 8555: MF 1-350-P								280 - 320 HV ₃₀	 Flux cored wire, suitable for medium alloyed steels and high strength steels. Can be used as a buffer and build-up 				
NiCrMo 2.2	Build-up	suild-up layers for carbon steels, buffer layers for continuous casting rolls and cement rolls.											Tensile strength:	 Highly crack resistant and is highly resistant to impact
	0,06	-	1,6	0,4	2,2	0,4	-	-	-	-	bal.	Ti+	900-960 N/mm ²	and pressure wear.

Submerged Arc Wires

DURMAT®			с	HEMICAI	TYP	KLASSIF ICAL API DSITION	PLICATIO	ONS	LD MET/	AL.			HARDNESS	TYPICAL PROPERTIES
Donanti	с	Si	Mn	Cr	Ni	Мо	Co	Nb	v	W	Fe	+	Th ALDREOD	
	DIN EN 1	.4700: T Fe	27-45-CPT	/ DIN 855	5: MF 5-45	5-PRT								Corrosion and impact load resistant.
FD 310 UP	Continu	ious cast	ing rolls										42 - 44 HRC	 Excellent resistance to thermal fatigue. Heat treatment is possible.
	0.12	0.7	2	13.8	3.5	1.1	-	0.2	0.2	-	bal.	-		Tough and can be worked with cutting tools.
	DIN EN 1	IN EN 14700: Fe Z1-300-PT / DIN 8555: MF 5-300-PT												
FD 328 UP	Slabbin	ıg rolls, b	ar mill r	olls.									280 - 325 HB	 Alloy cored wire for submerged arc. Suitable for operating temperatures up to 550 ° C.
	0.08	0.4	0.8	6	-	0.7	-	-	-	-	bal.	-		
	DIN EN 14700: Fe3-50-PT / DIN 8555: MF 5-50-PT													
FD 337 UP	Back-up	o rolls, pi	nch rolls	s, plate-n	nill level	er, slabb	ing-mill	rolls, ed	ger rolls,	looper-	tension r	olls.	52 - 54 HRC	 Flux cored wire for the submerged arc process. Resistant against high pressure and abrasion also an
	0.33	0.4	1.2	5.6	0.3	3.3	-	-	0.25	-	bal.	-		excellent resistance to high thermal fatigue.
	DIN EN 1	.4700: T Fe	213-300-P	/ DIN 855	5: MF 1-30	0-P			300-340 HB	• Flux cored wire, suitable for medium alloyed steels and				
FD 341 UP	Build-up layers for carbon steels, buffer layers for continuous casting rolls and cement rolls.						Tensile	high strength steels. • Can also be used as a buffer and build-up layer.						
	0.12	0.4 1.6 2.5 0.5 2.5 0.4 - bal	-	strength: ≈1200 N/mm²	Highly crack resistant and is highly resistant to impact and pressure wear.									
	DIN EN 1	DIN EN 14700: T Fe7-40-CPT / DIN 8555: MF 5-40-CPT												
FD 356 UP	Continu	ious cast	ous casting rolls.										42 - 44 HRC	 Resistant against corrosion, impact, continuos-rating wear in addition to effect of heat.
	0.05	0.4	1.2	17	4.6	1.1	-	0.2	0.25	-	bal.	-		• Best results are achieved by 2 - 3 layers.
	DIN EN 1	.4700: T Z	Fe7-45-CF	PT / DIN 85	55: MF 5-	45-PRT							Good corrosion resistance.	
				nts of sea , continu						e food a	nd paper		38 - 42 HRC	Very good resistance to cavitation and erosion. Thermal shock resistant.
1.4351	0.05	0.4	1	14	5	0.75	-	-	- -	-	bal.			High-pressure resistant in continuous exposure to heat.
	DIN EN 1	.4700: T Fe	27-450-CP	T / DIN 85	55: MF 5-4	150-PRT								 Flux cored wire for submerged arc welding.
FD 440 UP	Hot stri	p mill tal	ole rolls,	pinch ro	lls , cont	inuous c	asting ro	olls, con	tinuous l	billet.			500 HB 500°C: 480 HB	 Resistant against impact and medium abrasive wear. Resistant against corrosion and continuous rating
	0.3	0.4	1.0	13	2.4	1.5	-	-	1	-	bal.	-	600°C: 300 HB	through heat effect.
	DIN EN 14700: T Fe7-50-CPT / DIN 8555: MF 5-450-PRT													
FD 476 UP	Steel m	ill rolls, I	nardfacir	ng of rolls	s for hot	rolling.							48 - 50 HRC	 Flux cored wire for submerged arc welding. Corrosion resistant and wear resistant.
	0.3	0.4	1.4	16	4	1.5	1.5	-	1	1	bal.	-		 Resistant against impact and continuous rating through heat effect and high pressure.
	DIN EN 1	.4700: T Fe	8-50-CPT	/ DIN 855	5: MF 6-50)-PRT								
FD 502 UP		ious cast	ing rolls	and oth	er steel r	nill rolls	as scale	breaker	rolls, ho	t strip m	nill rolls, f	urnace		 Flux cored wire for the submerged arc welding process. Excellent for components subjected to metal-to-metal
	rolls. 0.3	_	-	13	-	1.5	2	-	2	1.2	bal.	-	530-540°C: 54-56 HRC	wear, corrosion and thermal fatigue cracking.

Chromium Steel

DURMAT®	KLASSIFICATION TYPICAL APPLICATIONS TYPICAL CHEMICAL COMPOSITION* (Wt%) OF WELD METAL									HARDNESS	TYPICAL PROPERTIES									
	с	Si	Mn	Cr	Ni	Мо	Co	Nb	v	W	Fe	+								
	DIN EN 1	4700: / DI	N 8555: T	Fe8-300-0	CP / AWS-	Nr. 410								-						
FD 4009 1.4009				surfaces ontinuo						rosion s	lide ring	sealing,	 Tough and corrosion resistant, acid resistant 300 - 360 HB Suited for parts that encounter wear from sea water p and power plant operations 							
	0.12	0.8	1.2	14.5	+	-	-	-	-	-	bal.	Ti+	and power plant operations							
	DIN EN 1	DIN EN 14700: T Z Fe8-250-CP / DIN 8555: MF 5-250-CP									Flux cored wire for the Open-Arc welding process									
FD 4015 1.4015		ealing surfaces, fittings for water, steam and gas fittings, bridge bearings, continuous casting Jlls, roller bearings, valves.												(available as MIG-wire)Stainless, corrosion resistant against sea water, organic and inorganic acids						
	0.1	-	-	17	-	-	-	-	-	-	bal.	-		Suitable for joining of Similar to materials						
	DIN EN 14700: T Z Fe8-50-CGPT / DIN 8555: MF6-50-CGPT									Touch as data islam allow										
FD 4028 1.4028				pe mate bearings,					bridge b	earings,	sealing	surface	 Tough and stainless alloy. Resistant to corrosion in seawater and dilute organic and inorganic acids. 							
	0.3	-	0.8	14	0.4	-	-	-	-	-	bal.	-								
	DIN EN 1	DIN EN 14700: T Fe8-40-CP / DIN 8555: MF 6-40-CP												 Tough and corrosion resistant. 						
FD 4115 1.4115	Sealing	Sealing surface of water-, steam- and gas armatures up to service temperatures of 450 $^\circ$ C.											42 - 44 HRC	• Suited for parts that encounter wear from sea water plant and power plant operations. Suited for sliding wear						
	0.2	-	-	17	0.4	1	-	-	-	-	bal.	-		(metal on metal).						
	DIN EN 1	4700: T Fe	e8-50-CP	/ DIN 8555	5: MF 6-50	-CP							Tough and corrosion resistant.							
FD 4122 1.4122	Bridge b casting		, sealing	surfaces	s, corrosi	on slide	ring seal	ling, rolle	er bearin	gs, valve	es, conti	nuous	48 - 51 HRC	• Suited for parts that encounter wear from sea water plant and power plant operations. Suited for sliding wear						
	0.4	-	-	17	0.4	1	-	-	+	-	bal.	-		(metal on metal).						
	DIN EN 1	4700: T Z	Fe8-50-C	GP / DIN 8	555: MF 6	-50-CGPT								Flux cored wire for the Open-Arc welding process						
FD 4122 Nb	Sealing	surface	of water	, steam a	and gas a	irmature	s.						48 - 51 HRC	(available as MIG-wire). • Corrosion resistant against sea water.						
	1.2 17 1 8 0.3 - bal • Good wear resistance					Good wear resistance.														
ED 4351	DIN EN 1	4700: T Z	Fe7-45-Cl	PT / DIN 8	555: MF 5	45-PRT								• Flux cored wire for open arc welding (available as MIG-						
FD 4351 N OA	Continu	ious cast	ting rolls	s, roller b	earings,	corrosio	n, valves	s, bridge	bearing	5.			38 - 42 HRC							
1.4351	0.05	0.9	1.1	14	5	0.75	-	-	-	-	bal.	N+		encounter wear from oxidation.Capable of resisting pitting and cavitation.						

PTA Equipment

As a result of more than 15 years of in-house development and use, we have now introduced a durable, reliable, mobile PTA machine into the market.

The cost-efficient PTA welding system DURWELD 300/2 PTA is equipped with a powerful water cooling unit, powerful air cooled 220/110V plug and can be operated manually or, optionally, with external manipulation devices using CNC or robotic interfaces.

Developed and manufactured by DURUM in Germany, the mobile plasma powder cladding system DURWELD 300/2 PTA can also be supplied with an interface for connection to a robot system.

Pilot arc current:	2 - 170A (120A 100% Duty Cycle)	Degree of protection:	IP 23
Main arc current:	2 - 300A (190A 100% Duty Cycle)	Plasma gas adjustment:	manual flow meter, 0.2-5 l/min
Voltage supply:	3x400V + N ±10%	Shielding gas adjustment:	manual flow meter, 0.2-15 l/min
Supply frequency:	50/60 Hz	Transport gas adjustment:	manual flow meter, 0.2-15 l/min
Max power consumption:	16 KVA	Recommended (max) gas inlet:	1 bar (1.5 bars)
Open-circuit V main inverter:	92V	Dimensions:	68 x 60 x 120 cm
Open-circuit V pilot inverter:	89V	Weight:	104 kg
Supply fuse:	16 A	Chiller Unit:	4.5 KW

Flow meter: analog or digital (lit up). Can be used for TIG or Stick welding. Available with CNC- or Robot interface.

Plug & Play Control Unit is equipped with safety systems for water, gas and temperature. Interface for remote control, robot, CNC.

Optional with a touch screen available.

Accessories

Powder Feeder PFU 4:

Carrier gas:	Ar, Ar-H ₂
Carrier gas flow rate:	0 - 4 l/min
Powder reservoir:	2.3 l
Dimensions (L x W x H):	310 x 170 x 470 mm
Powder feed rate*:	2-200 g/min
Container size:	2.3 l
Gas pressure:	max. 2 bar
Power consumption:	max. 1 A
Weight:	6 kg

* Depending on feeding wheel configuration, torch, anode and powder density

Two PFU 4 can be driven in parallel (only by power sources with the optional second motor control card) for applications that require feeding of different powders in the weld pool: i.e. matrix and carbides.

Feeding rate step controlled via feeding wheel speed directly from inverter PLC

PTA Torch PT 150M

Construction:	manual hand held torch
Max current:	150A (100A 100% Duty Cycle)
Powder flow rate:	3 - 40 g/min (depending on powder density)
Weight without hose pack:	0.5 kg
Description:	liquid cooled powder handheld torch

PTA Torch PT 300AUT i Discription: machine torch for inner coatings of parts with diameter > 80mm

Discription.	with diameter > 80mm
Construction:	horizontal
Max current:	300A (200A at 100% Duty Cycle)
Powder flow rate:	10 - 80 g/min (depending on powder density)
Length (other lengths on request):	500 mm (S), 1000 mm (M), 1500 mm (L)

PTA Torch PT 300M

Construction:	manual hand held torch
Max current:	300A (200A 100% Duty Cycle)
Powder flow rate:	3 - 80 g/min (depend on powder density)
Weight without hose pack:	0.7 kg
Description:	liquid cooled powder handheld torch

PTA Torch PT 300AUT

Construction:	vertical
Max current:	300A (200A 100% Duty Cycle)
Powder flow rate:	3 - 80 g/min (depending on powder density)
Weight without hose pack:	0.8 kg
Description:	liquid cooled powder machine torch for high duty applications

PTA Torch PT 400AUT

Construction:	vertical
Max current:	350A (300A 100% Duty Cycle)
Powder flow rate:	3 - 140 g/min (depending on powder density)
Weight without hose pack:	0.9 kg
Description:	liquid cooled powder machine torch for high duty applications

PTA Powders

				TYPIC	AL CHEMI	ICAL CO									
DURMAT®	С	Si	Mn	Cr	В	Ni	Мо	Co	Nb	V	W	Fe	+	TYPICAL PROPERTIES AND APPLICATION	
33-PTA	-	4.1	-	6	1	bal.	-	-	-	-	-	<3	-	 Special powder for glass industry. Hardness NiSF: 33 HRC. 	
55 T IIX	NiSF-Allo	oy. Gas ato	omized.											• 6% Cr.	
38-PTA	<0.1	2.5-3.5	-	6	1.8-2.4	bal.	-	-	-	-	-	<3	-	 Heat and corrosion resistant. Abrasion resistant. 	
	NiSF-Carbide. Blend. 70% Matrix													• Hardness NiSF: 40 HRC.	
54-PTA	0.5-0.7	3.5-4.5	-	15-17	3-4	bal.	2-4	-	-	-	-	<4	Cu: 2-3	 Heat and corrosion resistant based on Mo and Cu content. Abrasion resistant. 	
	NiSF-Allo	y. Gas ato	omized.											• Hardness: 56-61 HRC.	
55-PTA	0.4-0.6	3.5-4.5	-	12-14	2.5-3.5	bal.	-	-	-	-	-	<4	-	 Heat and corrosion resistant. Abrasion resistant. 	
	NiSF-Allo	oy. Gas ato	omized.											• Hardness: 50-55 HRC.	
56-PTA	0.25	3.2	-	7.5	1.8	bal.	-	-	-	-	-	<4	-	 Heat and corrosion resistant. Abrasion resistant, low friction. 	
	NiSF-Allo	oy. Gas ato	omized.											• Hardness: 40 HRC.	
57-PTA	0.9-1.1	4	-	15-17	3.2	bal.	-	-	-	-	-	<4	-	 Heat and corrosion resistant. Abrasion resistant, low friction. 	
	NiSF-Allo	oy. Gas ato	omized.											• Hardness: 58-60 HRC.	
58-PTA	0.75	4.3	-	15	3.1	bal.	-	-	-	-	-	<4	-	 Heat and corrosion resistant. Abrasion resistant, low friction. 	
	NiSF-Allo	oy. Gas ato	omized.											• Hardness: 50-52 HRC.	
59-PTA	<0.1	3	-	-	3	bal.	-	-	-	-	-	<2	-	Heat and corrosion resistant.Abrasion resistant.	
55 T IA	NiSF-Allo	oy. Gas ato	omized.											Hardness: 50-52 HRC.No Cr-content.	
61-PTA	<0.1	3	-	-	3	bal.	-	-	-	-	-	<2	-	 Heat and corrosion resistant. High abrasion resistance. 	
	NISF-Carbide. Blend. DURMAT® 59-PTA: 40 % DURMAT® FTC: 60 %													High content of Fused Tungsten Carbide.	
62-PTA	<0.1	3	-	-	3	bal.	-	-	-	-	-	<2	-	Heat, corrosion and abrasion resistant.	
	NiSF-Car	bide. Bler	nd.								• High content of Spherical Fused Tungs URMAT® SFTC: 60 %			High content of Spherical Fused Tungsten Carbide (SFTC).	

DURMAT®	TYPICAL CHEMICAL COMPOSITION OF MATRIX (Wt%)													
DORMAT	с	Si	Mn	Cr	В	Ni	Мо	Co	Nb	v	W	Fe	+	TYPICAL PROPERTIES AND APPLICATION
63-PTA	0.25 NiSF-Car	3.2 bide. Bler	- nd.	7.5	1.8	bal.	-	-	-	- DURMAT DURMAT			-	 Heat, corrosion and abrasion resistant. Hardness Matrix: 45 HRC. High content of Fused Tungsten Carbide.
65-PTA	0.75	4.3	-	15	3.1	bal.		-	-	-	-	<4	-	 Heat, corrosion and abrasion resistant. Hardness Matrix: 52 HRC.
	NiSF-Car	bide. Bler	nd.							DURMAT DURMAT				High content of Fused Tungsten Carbide (FTC).
66-PTA	0.4	<0.1	-	15-17	3	bal.	-	-	-	-	-	<4	-	 Heat and corrosion resistant. High abrasion resistance. Hardness Matrix: 50 HRC.
	NiSF-Car	bide. Bler	nd.							+Specia	l Carbid	e: 10 - 15	%	 <15% special carbides.
67-PTA	0.02 NiSF-Car	3 bide. Bler	- nd.	-	3	bal.	-	-	-	DURMAT	FTC: 5			 Heat and corrosion resistant. High abrasion resistance. Hardness Matrix: 50 HRC. <8% special carbides.
68-PTA	0.02	3	-	-	3	bal.	-	-	-	-	-	(SC): 6-8 <2	-	 Heat and corrosion resistant. High abrasion resistance. Hardness Matrix: 50 HRC.
00-F TA	NiSF-Car	bide. Bler	nd.							DURMAT	ſ [®] SFTC:	A: 35-40 56-60 % (SC): 6-8		 Mixture of Spherical Fused Tungsten Carbides and <8% special carbides.
71-PTA	<0.1	3	-	-	3	bal.	-	-	-		-	<45	-	 Heat and corrosion resistant. High abrasion resistance. Link accurate (Force Trunctor Cachida (FTC))
	NiSF-Car	bide. Bler	nd.							DURMAT DURMAT				 High content of Fused Tungsten Carbide (FTC). Hardness Matrix: 50-55 HRC.
72-PTA	<0.1	3	-	-	3	bal.	-	-	-	- DURMAT	-	<45	-	Heat and corrosion resistant.High abrasion resistance.
	NiSF-Car	bide. Bler	nd.						 High content of Spherical Fused Tungsten Carbide (SFTC). 					
73-PTA	<0.1	3	-	-	3	bal.	-	-	-	-	-	<45	-	 Heat and corrosion resistant. High abrasion resistance. High content of mono crystalline TC (MCWC).
	NiSF-Car	bide. Bler	nd.							DURMAT DURMAT				Hardness Matrix: 50-55 HRC.
74-PTA	20-24	<0.1	-	-	3.5	bal.	-	-	-	- NiSF-Ma	- atrix: 40 (<5 %	-	 Heat and corrosion resistant. High abrasion resistance. Hardness Matrix: 50 HRC.
	NiSF-Car	bide. Bler	nd.							DURMAT Special		0 % (SC): <10) %	 <10% special carbides.
77-PTA	<0.1	3	-	-	3	bal.	-	-	-	-	-	<45	-	 Heat and corrosion resistant. High abrasion resistance. Hardness: 50-55 HRC.
	Ni-Alloy.	Gas atom	nized.											• naturiess: 50-55 nrc.
79-PTA	0.9-1.1	4	-	15-17	3.2	bal.	-	-	-		-	<4	-	 Heat and corrosion resistant. High abrasion resistance. High content of Fused Tungsten Carbide.
	NiSF-Car	bide. Bler	nd.							DURMAT DURMAT				• Hardness Matrix: 58-60 HRC.
84-PTA	- NiSF-Car	4.1 bide. Bler	-	6	1	bal.	-	-	-	- DURMAT			-	 Heat and corrosion resistant. High abrasion resistance. High content of Mono Tungsten Carbide. Hardness NiSF: 33 HRC.
			nu.							DURMAT	F [®] MWC:			
85-PTA	0.75	4.3	-	15	3.1	bal.	-	-	-	- DURMAT	- F® 58-PT	<4 A: 40 %	-	Heat and corrosion resistant. High abrasion resistance. High content of Mono Tungsten Carbide. Hardnose NiSE: 48, 52 HPC
	NiSF-Car	piae. Blei	na.							DURMAT				Hardness NiSF: 48-52 HRC.

PTA Powders

DURMAT [®]				TYPICA	L CHEM	IICAL CO	MPOSITI							
DORMAT	с	Si	Mn	Cr	В	Ni	Мо	Co	Nb	v	W	Fe	+	TYPICAL PROPERTIES AND APPLICATION
93-PTA	<0.1 NiSF-Car	3 bide. Bler	- nd.	-	3	bal.	-	-	-	- DURMA Special		<2 A: 40 % (SC): 60	- %	 Heat and corrosion resistant. High abrasion resistance. High content of a mixture of Special Tungsten Carbides (STC). Hardness NiSF: 50-52 HRC.
108-PTA	0.4 FeCr-Car	4006 Matrix											 Friction resistant. High abrasion resistance. High content of S inter WC-Co pellets. Hardness Matrix : 250HB. 	
109-PTA	<0.1	kida plan	6-7	18-19	-	9	-	-	-	- Matrix: 4	- 40%	bal.	-	 Friction resistant. High abrasion resistance. High content of Sinter WC-Co pellets.
	FeCr-Car	bide. Bler	nd.					• Hardness Matrix : 170HB.						
110-PTA	0.25 Carbide.	0.25 3.2 - 7.5 1.8 bal											- %	 Friction resistant. High abrasion resistance. High content of Sinter WC-Co pellets. Hardness Matrix : 40 HRC.
	<0.1	-	-	20-24	-	bal.	8-9	<4	3.5	<5	-	<5	-	High heat and corrosion resistance.
401-PTA	Ni-Carbio	de. Blend.								Matrix: Carbide				 High abrasion resistance. High content of Fused Tungsten Carbides (FTC) and SC mixture
	<0.1	-	-	20-24	-	bal.	8-9	<4	3.5	<5	-	<5	-	 High heat and corrosion resistance. High abrasion resistance.
411-PTA	Boride, C	arbide. B	lend.							Matrix: Carbide				 High content of Spherical Fused Tungsten Carbides (SFTC) and SC mixture.
470-PTA	- Boride, C	2.75	-	4	1	-	-	-	-	-	-	-	5	Heat and corrosion resistant. Hardness: 33 HRC.
	2.5-2.8	ai biue.		<7			1-1.25					bal.		
505-PTA		. Gas aton	nized.	-1			1 1.25			Special	Carbide	(SC): 10-	11 %	 Resistant against heavy impact and abrasion. Fine special carbides (10-12%). Hardness: 55-60 HRC.
	3.1	-	-	<9	-	-	1.5-1.8	-	-	-	-	bal.	-	Resistant against heavy impact and abrasion.
506-PTA	Fe- Alloy	. Blend.								Special	Carbide	(SC): 15-	18 %	 Fine special carbides (18%). Hardness: 60-62 HRC.
	3.1	-	-	<9	-	-	1.3-1.8	-	-	-	-	bal.	-	 Resistant against heavy impact and abrasion.
507-PTA	Fe- Alloy	. Blend.								Special Carbide (SC): 22-25 %				 Fine special carbides (20%). Hardness: 60-65 HRC.
	0.03	-	-	18	-	13	3	-	-	-	-	bal.	-	Austenitic weld metal with low carbon content.
516-PTA	Fe-Alloy.	Gas atom	nized.											 Resistant against pitting corrosion and intercrystalline corrosion. Max. temperature: 400°C.
520-PTA	<0.1	-	6-7	18-19	-	9	-	-		-	-	bal.	-	Austenitic weld metal with low carbon and Mn content.
	Fe-Alloy. Gas atomized.									Corrosion resistant.				
525-PTA	0.4	-	15-16	14-15	-	1.2	-	-	-	-	-	bal.	-	 Austenitic weld metal with low carbon and Mn content. Corrosion resistant.
323-F 1A	Fe-Alloy.	Gas atom	nized.											Corrosion resistant. Thermal shock resistant up to 850°C.

				TYPICA	L CHEM	ICAL CO	MPOSITI	ON OF M	IATRIX	(Wt%)				
DURMAT®	С	Si	Mn	Cr	В	Ni	Мо	Co	Nb	V	W	Fe	+	TYPICAL PROPERTIES AND APPLICATION
530-PTA	0.3	0.6	1	11	-	-	1.3	1.6	-	1	-	bal.	-	Corrosion resistant. Abrasion resistant.
	Fe-Alloy.	Gas aton	nized.											• Hardness: 47-52 HRC.
536-PTA	1	-	-	4.2	-	-	7	-	-	2	2	bal.	-	 Corrosion resistant. Abrasion resistant.
5501 111	Fe-Alloy.	Gas aton	nized.											Fine carbide microstructure.Hardness: 58 HRC.
564-PTA	3.8	-	-	22	1	-	-	-	-	0.8	0.8	bal.	-	 FeCrC alloy with B and V. Abrasion resistant.
J04-F IA	Fe-Alloy.	Gas aton	nized.							Hardness: 62-64 HRC.				
601-PTA	0.2-0.6	-	-	4-6	-	-	1-1.6	-		0.5-1.5	-	bal.	-	 Crack resistant. Resistant to tempering.
001114	Fe-Alloy.	Gas aton	nized.								Suitable for impact wear conditions.Hardness: 58 HRC.			
625-PTA	0.05	-	-	21	-	bal.	9.2	-	3.5	-	-	3	-	 High corrosion resistance e.g. in acids with chloride content. Sea water resistant.
0201111	Ni-Alloy.	Gas atom	nized.									Good resistance against friction.Hardness: 210 HV.		
F-PTA	1.5	1.2	-	26	-	23	-	bal.	-		12	-	-	 Abrasion and corrosion resistant. Good resistance against friction and temperature (950°C).
	Co-Alloy.	Gas ator	nized.											• Hardness: 42 HRC.
S1-PTA	2.5	1.1	-	30	-	-	-	bal.	-	-	12	-	-	 Abrasion and corrosion resistant. Good resistance against friction and temperature (750°C).
	Co-Alloy.	Gas ator	nized.											• Hardness: 55 HRC.
S6-PTA	1	1.2	-	28	-	-	-	bal.	-	-	4.2	-	-	 Abrasion and corrosion resistant. Good resistance against friction and temperature (750°C).
	Co-Alloy.	Gas ator	nized.											• Hardness: 42 HRC.
S12-PTA	1.4	1.2	-	27	-	<1	-	bal.	-	-	8	<1	-	 Abrasion and corrosion resistant. Good resistance against friction and temperature (750°C).
	Co-Alloy.	Gas ator	nized.											• Hardness: 46 HRC.
S21-PTA	-	0.5	-	26	-	1-3	5.2	bal.	-	-	-	-	-	 Good resistance against friction and temperature. Buffer layer for thick Stellite coatings.
J21 IA	Co-Alloy.	Gas ator	nized.											Hardness: 23 HRC.
S190-PTA	3-3.5	1	1	24-28	-	3	-	bal.	-	-	12-16	5	-	 Heat and corrosion resistant. Good resistance against friction and temperature.
3130-PTA	Co-Alloy.	Gas ator	nized.						Hardness: 54-58 HRC.					

Laser Powders

DURMAT [®]	GRAIN SIZE (µm)	POWDER TYPE	TYPICAL PROPERTIES
114-LAS	-125+45	NiSF-Carbide. Blend. NiCrBSi + 65% FTC	 Heat and corrosion resistant High abrasion resistance High content of Fused Tungsten Carbide (FTC)
163-LAS	-125+45	NiSF-Carbide. Blend. NiCrBSi + 60% SFTC	 Heat and corrosion resistant High abrasion resistance High content of Spherical Fused Tungsten Carbide (SFTC)
625-LAS	-150+53	Ni-Alloy. Gas atomized.	 High corrosion resistance e.g. in acids with chloride content Sea water resistant Good resistance against friction Hardness: 210 HV

Thermal Spray Powders

Carbide

PRODUCT					ТҮРІС	CAL CHEMIC	AL COM	POSITIO	N (Wt%)				TYPICAL PROPERTIES
PRODUCT	С	Si	Mn	Cr	r B	8 Ni	Мо	Co	V	W	Fe	WC	+	AND APPLICATIONS
WC-Co 88-:	12													 Abrasion and erosion resistant. Max. operating temperature 500°C.
DURMAT® 101	Carbid	e. Agglor	merated. S	Sintered.										Spherical.Used for rolls and steel industry.
DURMAT® 111	Carbid	e. Fine 1.	.3 µm. Agg	glomerat	ed. Sinte	red.								
DURMAT® 121	Carbid	e. Finest	0.7 µm. A	gglomer	ated. Sin	tered.								 Similar to DURMAT[®] 101. Improved deposition efficiency.
DURMAT® 131	Carbid	e. UltraFi	ine 0.4 µn	n. Agglon	nerated.	Sintered.								High abrasive wear resistance.Less coating roughness.
	-	-	-		-	. <u>-</u>	-	12	-	-	-	88	-	
WC-Co 83-:	17													 Max. operating temperature 500°C. Abrasion and erosion resistant.
DURMAT® 102	Carbid	e. Agglor	nerated. S	Sintered.										Used in extrusion dies, glass industry, pump parts.
DURMAT® 112	Carbid	e. Fine 1.	.3 µm. Agg	glomerat	ed. Sinte	ered.								Improved deposition efficiency / wear resistance. Less coating roughness.
	-	-	-	-	-	· -	-	17	-	-	-	83	-	
WC-Co-Cr 8	86-10-4	Ļ												 Max. operating temperature 500°C. Higher corrosion resistance than Co matrix.
DURMAT® 105	Carbid	e. Agglor	nerated. S	Sintered.										Hard chrome replacement.Used for paper rolls.
DURMAT® 115	Carbid	e. Fine 1.	.3 µm. Agg	glomerat	ed. Sinte	ered.								 Improved deposition efficiency / abrasion and corrosion resistance.
DURMAT® 125	Carbid	e. Submi	cron 0.7 µ	ım. Agglo	omerated	l. Sintered.								 Improved deposition efficiency, less coating roughness.
DURMAT® 135	Carbid	e. Ultrafi	ne 0.4 µm	. Agglom	nerated. S	Sintered.								High abrasive wear and corrosion resistance.
	-	-	-	4	-	· _	-	10	-	-	-	86	-	
DURMAT®	WC-Ni 8	38-12 / C	arbide. Ag	glomera	ated. Gesi	intert								Ni-bond carbide powder.
103	-	-	-	-	-	12	-	-	-	-	-	88	-	 Max. operating temperature 500°C. Higher corrosion resistance than WC-Co.
DURMAT®	WC-Ni 8	33-17 / Ca	arbide. Ag	glomera	ated. Sint	ered.								 Ni-bond carbide powder. Max. operating temperature 500°C.
104	-	-	-	-	-	17	-	-	-	-	-	83	-	Higher corrosion resistance than WC-Co.Higher ductility than WC-Co 88 12.
DURMAT®	WC-Co-	Cr 86-6-	8 / Carbid	le. Agglo	merated.	. Sintered.								 Max. operating temperature 500°C. Higher corrosion resistance than DURMAT[®] 105.
106	-	-	-	8	-	-	-	6	-	-	-	86	-	Hard chrome replacement.Used for paper rolls.
DURMAT [®]	WC-W ₂ O	C (FTC) /	Carbide. S	Sintered.	. Crushed	l.								Fused tungsten carbide.
107	4	-	-	-	-	. <u>-</u>	-	<0.3	-	bal.	-	-	Cfree: <0.1	 Hardness: >2,200 HV. Used for powder blends for high abrasion resistance coatings.
DURMAT®	WC-CrC	:-Ni 73-18	8-7 / Carb	ide. Aggl	lomerate	d. Gesintert								 Max. operating temperature 750°C. Higher corrosion ond oxidation resistance than WC-Co
108	6.5	-	-	17-1	19 -	7	-	-	-	bal.	-	-	-	materials.

Thermal Spray Powders

				т	YPICAL	CHEMIC	AL COMF	POSITIO	N (Wt%)				TYPICAL PROPERTIES
PRODUCT	с	Si	Mn	Cr	В	Ni	Мо	Co	V	W	Fe	WC	+	AND APPLICATIONS
DURMAT [®]	WC-Co-C	r-Ni 85-10	-4-1 / Car	bide. Agg	lomerated	d. Sintered	ł.							Higher oxidation and corrosion resistance than WC-Co-based
109	-	-	-	4	-	1-1.5	-	10	-	-	-	bal.	-	materials.
DURMAT®	Cr ₃ C ₂ / Ca	arbide. Si	ntered. Ci	rushed.										 Cr-Carbide for blends. Powder for wear resistant coatings.
250	12.7	-	-	bal.	-	-	-	-	-	-	-	-	-	Temperature resistant up to 870°C.
DURMAT [®]	Cr ₃ C ₂ -NiC	Cr 75-25 /	Carbide. /	Agglomera	ated. Sint	ered.								• Powder for wear and oxidation resistant coatings.
251	10.5			bal.		14.5							0:<1	• Max. operating temperature 870°C.
DURMAT® 254	Cr ₃ C ₂ -NiC	Cr 75-25 /	Carbide-A	lloy. Mix.										
Cr ₃ C ₂	12.7	-	-	bal.	-	-	-	-	-	-	-	-	-	• Similar to DURMAT [®] 251, but blended.
NiCr	<0.25	-	-	18-21	-	bal.	-	-	-	-	-	-	-	

Ni-based

PRODUCT				יד	PICAL	CHEMICA	L COMP	OSITION	I* (Wt9	%)				TYPICAL PROPERTIES
PRODUCT	с	Si	Mn	Cr	В	Ni	Мо	Co	V	w	Fe	WC	+	AND APPLICATIONS
DURMAT® 339	50% NiCr	BSi + 50%	% WC-Co /	NiSF-Cart	oie. Bleno	d.					-125	+45 / -10	6+22	
NiCrBSi	0.8-1	3.8	-	16-17	3.3	bal.	-	-	-	-	-	-	-	 Moderate corrosion resistance. Erosion and abrasion resistant. Hardness NiSF: 56 HRC.
DURMAT® 102	-	-	-	-	-	-	-	17	-	-	-	83	-	
DURMAT® 346	60% NiCr	BSi + 40%	% WC-Co /	NiSF-Cart	oie. Bleno	d.						-45+22		Moderate corrosion resistance.
NiCrBSi	0.8-1	3.8	-	16-17	3.3	bal.	-	-	-	-	-	-	-	Moderate corrosion resistance. Erosion and abrasion resistant. Hardness NiSF: 56 HRC.
DURMAT® 101	-	-	-	-	-	-	-	12	-	-	-	88	-	
NiCrBSi+F	тс													Hardness NiSF: 56 HRC
DURMAT® 349	65% Mati	rix + 35%	FTC / NiS	F-Carbie.	Blend.									
DURMAT [®] 350	60% Mati	rix + 40%	FTC / NiS	F-Carbie.	Blend.				6+22					
DURMAT® 351	50% Mati	rix + 50%	FTC / NiS	F-Carbie.	Blend.				6+22	Moderate corrosion resistance.Erosion and abrasion resistant.				
DURMAT® 352	40% Mati	rix + 60%	FTC / NiS	F-Carbie.	Blend.						-125	+45 / -10	6+22	
DURMAT® 353	20% Mati	rix + 80%	FTC / Nis	F-Carbie.	Blend.						-125	+45 / -10	6+22	
NiCrBSi	0.8-1	3.8	-	16-17	3.3	bal.	-	-	-	0.8-1	-	-	-	
FTC	3.9-4.1	-	-	-		-	-	-	-	bal.	-	-	-	
NiCrBSi + V	NC-Co													Hardness NiSF: 56 HRC
DURMAT® 354	50% Mati	rix + 50%	DURMAT	® 101 / NiS	F-Carbie	. Blend.					-125	+45 / -10	6+22	
DURMAT [®] 355	20% Mati	rix + 80%	DURMAT	® 101 / NiS	F-Carbie	. Blend.					-125	+45 / -10	6+22	Moderate corrosion resistance
DURMAT [®] 356	65% Mati	rix + 35%	DURMAT	® 101 / NiS	F-Carbie	. Blend.					-125	+45 / -10	6+22	High erosion and abrasion resistance
DURMAT [®] 372	60% Mati	rix + 40%	DURMAT	® 101 / NiS	F-Carbie	. Blend.					-125	+45 / -10	6+22	
NiCrBSi	0.8-1	3.8	-	16-17	3.3	bal.	-	-	-	0.8-1	-	-	-	
DURMAT® 101	-	-	-		-	-	-	12	-	-	-	88	-	

				т	YPICAL C	HEMICA	AL COMP	OSITION	l* (Wt%	%)				TYPICAL PROPERTIES
PRODUCT	С	Si	Mn	Cr	В	Ni	Мо	Co	V	W	Fe	WC	+	AND APPLICATIONS
DURMAT® 383	40% DU	RMAT® 456	i + 60% D	URMAT [®] 9	94/6 / NiSF	-Carbie. E	Blend.				-125+	+45 / -10	6+22	Moderate corrosion resistance
DURMAT® 456		3.8	-	16-17	3.3	bal.	-	-	-	-	-	-	-	Frosion and abrasion resistant Spherical WC-Co carbides
DURMAT® 94/6	-	-	-	-	-	-	-	6	-	-	-	94	-	Hardness NiSF: 56 HRC
DURMAT® 384		+ SFTC / N	iSF-Carb	ie. Blend.							-125+	+45 / -10	6+22	
NiCrBSi	3.8	1.2-2.2	-	16-17	3.3	bal.	-	-	-	-	-	-	-	 Moderate corrosion resistance Erosion and abrasion resistant Spherical Fused Tungsten Carbides (SFTC)
SFTC	3.9-4.1	-	-	-	-	-	-	-	-	bal.	-		-	Hardness NiSF: 56 HRC
DURMAT® 389	50% NiC	rBSi + 50%	6 SFTC / 1	NiSF-Carbi	ie. Blend.						-125+	+45 / -10	6+22	
NiCrBSi	<0.1	2.5-3.5	-	-	1.8-2.4	bal.	-	-	-	-	<0.5	-	-	 Moderate corrosion resistance Erosion and abrasion resistant 50% DURMAT[®] 107
SFTC	3.9-4.1	-	-	-	-	-	-	-	-	bal.	-	-	-	Hardness NiSF: 40 HRC
DURMAT® 390	30% NiC	rBSi + 70%	6 FTC / Ni	iSF-Carbie	e. Blend.						-125+	+45 / -10	6+22	W. Lat. and the state of the st
NiCrBSi	0.8-1	3.8	-	16-17	3.3	bal.	-	-	-	0.8-1	-	-	-	 Moderate corrosion resistance Erosion and abrasion resistant 70% DURMAT[®] 107
FTC	3.9-4.1	-	-	-	-	-	-	-	-	bal.	-	-	-	Hardness NISF: 56 HRC
DURMAT® 391	50% NiC	rBSi + 50%	6 FTC / Ni	iSF-Carbie	e. Blend.						-125+	+45 / -10	6+22	Moderate corrosion resistance
NiCrBSi	<0.3	3-4	-	7-9	1.5-1.8	bal.	-	-	-	-	-	-	-	Frosion and abrasion resistant So% Spherical Fused Tungsten Carbides (SFTC)
SFTC	3.9-4.1	-	-	-	-	-	-	-	-	bal.	-	-	-	Hardness NiSF: 56 HRC
DURMAT® 392	40% NiC	rBSi + 60%	6 FTC / Ni	iSF-Carbie	e. Blend.						-125+	+45 / -10	6+22	Moderate corrosion resistance
NiCrBSi	<0.3	3-4	-	7-9	1.5-1.8	bal.	-	-	-	-	-	-	-	Frosion and abrasion resistant 60% Spherical Fused Tungsten Carbides (SFTC)
SFTC	3.9-4.1	-	-	-	-	-	-	-	-	bal.	-	-	-	Hardness NiSF: 56 HRC
DURMAT®	NiCrBCu	IMo / Ni-Al	loy. Gas a	atomized.							-125+	+45 / -10	6+22	Corrosion resistant
444	0.5	4	-	16	4	bal.	3	-	-	-	4	-	Cu: 3	Heat and abrasion resistant Hardness NiSF: 62 HRC
DURMAT®	Ni-Cr 80	-20 / Ni-All	oy. Wate	r atomize	d.						-125+	+45 / -10	6+22	Bond coating
450	≤0.25	≤1.5	≤2.5	18-20	-	bal.	-	-	-	-	≤1.5	-	-	• Max. operating temperature 950°C
DURMAT®	Ni-Cr 80	-20 / Ni-All	oy. Gas a	atomized.							-125+	+45 / -10	6+22	 Similar to DURMAT[®] 450, but gas atomized
451	≤ 0.25	≤1.5	≤2.5	18-20	-	bal.	-	-	-	-	≤1.5	-	-	Corrosion and oxidation resistant
DURMAT®	Ni-Al 95-	-5 / Ni-Allo	y. Gas at	omized.							-125+	+45 / -10	6+22	Bond coating
452	-	≤0.5	-	-	-	bal.	-	-	-	-	≤1	-	Al: 3-6	Max. operating temperature 900°C
DURMAT®	NiCrBSi	/ NiSF-Allo	y. Gas at	omized.							-125+	+45 / -10	6+22	 Moderate corrosion resistance Abrasion and erosion resistant
453	<0.4	3-4	-	7-9	1.4-1.8	bal.	-	-	-	-	-	-	-	Hardness NiSF: 40 HRC
DURMAT®	NiCrBSi	/ NiSF-Allo	y. Gas at	omized.							-125+	+45 / -10	6+22	 Moderate corrosion resistance Abrasion and erosion resistant
455	0.3-0.5	3.7	-	13-15	2.4-2.6	bal.	-	-	-	-	-	-	-	Hardness NiSF: 40 HRC
DURMAT®	NiCrBSi	/ NiSF-Allo	y. Gas at	omized.							-125+	+45 / -10	6+22	 Moderate corrosion resistance Abrasion and erosion resistant
456	0.8-1	3.8	-	16-17	3.3	bal.	-	-	-	-	-	-	-	Abrasion and erosion resistant Hardness NiSF: 50 HRC
DURMAT®	NiCrBSi	/ NiSF-Allo	y. Gas at	omized.							-125+	+45 / -10	6+22	 Special powder for glass industry Hardness NiSF: 34 HRC
470	-	2.7	-	4	1	bal.	-	-	-	-	-	-	Other: 5	• 5% Cr
DURMAT®	NiCrBSi	/ NiSF-Allo	y. Gas at	omized.							-125+	+45 / -10	6+22	 Special powder for glass industry Hardness NiSF: 22 HRC
477	-	2.7	-	2	1	bal.	-	-	-	-	-	-	-	• 2% Cr

Thermal Spray Powders

PRODUCT				Т	YPICAL (CHEMIC	AL COMP	OSITION	I* (Wt%	6)				TYPICAL PROPERTIES
PRODUCT	С	Si	Mn	Cr	В	Ni	Мо	Co	V	W	Fe	WC	+	AND APPLICATIONS
DURMAT [®]	NiBSi / N	iSF-Alloy.	Gas aton	nized.							-125	+45 / -10	06+22	Special powder for glass industry
478	-	3.6	-	-	1	bal.	-	-	-	-	-	-	-	Hardness NiSF: 30 HRC Cr-free
DURMAT®	NiCrBSiM	1oCu / NiS	F-Alloy. C	Gas atomiz	zed.						-125	+45 / -10	06+22	 Good corrosion resistance Abrasion and erosion resistant
491	0.4-0.7	4-5	-	16-17	3.5-4	bal.	2.5-3.2	-	-	-	2.5-3.5	-	Cu: 2-3	 Heat resistant Hardness NiSF: 58-60 HRC
DURMAT [®]	NiCrBSi /	NiSF-Allo	oy. Gas at	omized.							-125	+45 / -10)6+22	Special powder for glass industry
498	0.5	1.5	-	7.6	1.8	bal.	-	-	-	-	2	-	-	Hardness NiSF: 32-37 HRC
DURMAT®	NiCrBSi /	NiSF-Allo	oy. Gas at	omized.							-125	+45 / -10	06+22	Special powder for glass industry
499	0.45	2.25	-	10	2	bal.	-	-	-	-	2.5	-	-	Hardness NiSF: 35-40 HRC
DURMAT [®]	NiCrBSi /	NiSF-Allo	oy. Gas at	omized.							-125	+45 / -10)6+22	 Special powder for glass industry Hardness NiSF: 45-50 HRC
583	0.65	3.75	-	11.5	2.45	-	-	-	-	-	4.35	-	-	• Hardness NISF: 45-50 HKC • 12 % Cr

Oxide

PRODUCT				TYPICAL	. CHEMIC	AL COMPC	OSITION* (Wt%)			TYPICAL PROPERTIES
PRODUCT	Cr203	SiO2	Fe2O3	Al203	TiO2	Na2O	Fe2O3	Crfree	Acid Soluble:	Grain Size	AND APPLICATIONS
DURMAT®	Cr ₂ O ₃ High	Purity / Ox	ide. Fused.	Crushed.						-45+10	 Protection against friction and sliding wear. Chemical resistant.
600	>99	≤0.5	≤0.1	-	-	-	-	-	typical 0.03	-45+10	Hardness: ~1,300 HV.
DURMAT [®]	Cr ₂ O ₃ / Oxi	de. Fused. (Crushed.							-45+10	High hardness and chemical resistance .
601	>92	≤1	≤0.1	≤1					typical 3	45110	Suitable for pump parts, bearings, seals and textile machinery.
DURMAI	Cr ₂ O ₃ -TiO ₂ -	SiO ₂ / Oxid	e. Fused. Cr	ushed.						-45+10	 High content of Cr₂O₃. Lower hardness compared to DURMAT[®] 600.
602	>96	4-5	<0.2	-	-	-	-	<1	-	45110	Suitable for textile and pump parts.
DURMAT®	Al ₂ O ₃ High	Purity / Ox	ide. Fused.	Crushed.						-45+10	 APS. Max. operating temperature 1,650°C
603	-	≤0.02	≤0.05	>99.5	-	≤0.3	-	-	-	13.10	Excellent dielectric properties.
DORMAI®	Al ₂ O ₃ -TiO ₂	Oxide. Fu	sed. Crushed.							-45+10	 APS. Max. operating temperature 1,100°C.
604	-	≤0.6	≤0.05	>96	≤3.5	-	-	-	-	10 10	Corrosion and erosion resistant.
DURMAT [®]	TiO ₂ / Oxid	e.								-45+10	APS. Moderate wear resistance compared with DURMAT [®] 604.
644	-	<0.05	>0.5	0.05	bal.	-	-	-	-		Soluble in alkalic and sulfuric acid.

Highly Abrasion Resistant Materials

DURMAT®				T	PICAL (CHEMICA	L COMP	OSITION	1* (Wt9	%)				TYPICAL PROPERTIES
DORMAT	С	Si	Mn	Cr	В	Ni	Мо	Co	V	W	Fe	WC	+	ITPICAL PROPERTIES
46 751	Flux-core	ed Wire fo	r Therma	l Spraying										 Max. operating temperature 500°C.
AS 751	0.4	-	-	-	1	bal.	-	-	-	-	-	-	FTC: 50	• 50% Fused Tungsten Carbide (FTC).
AS 780	Flux-core	ed Wire fo	r Therma	l Spraying										High abrasion resistance.
A3 160	0.4	-	-	-	1	bal.	-	-	-	-	-	-	WC-Co 88/12: 50	• 50% WC-Co.
AS 781	Flux-core	ed Wire fo	r Therma	l Spraying										High abrasion resistance.
A5 161	0.4	-	-	-	2	bal.	-	-	-	-	-	-	WC-Co 88/12: 30	• 30% WC-Co.
AS 786	Flux-core	ed Wire fo	r Therma	l Spraying										High abrasion and corrosion resistant.
A5 100	0.4	1	<1	-	1	bal.	-	-	-	-	-	-	CrC: 35	

Highly Corrosion Resistant Materials

				T	PICAL O	CHEMICA	L COMP	OSITION	l* (Wt%	6)				
DURMAT®	С	Si	Mn	Cr	В	Ni	Мо	Co	V	W	Fe	WC	+	TYPICAL PROPERTIES
AS 726	Flux-core	d Wire fo	r Therma	l Spraying										Corrosion resistant.
AS 720	<0.1	<0.1	0.7	22	-	bal.	16.5	-	-	4	-	-	Ti: 0.15	• Similar to 2.4606 / Inconel 686.
AS 745	Flux-core	ed Wire fo	r Therma	l Spraying										 High corrosion resistance. Resistant against Acid with Cl-content.
NJ 14J	<0.1	-	<1	<1	-	bal.	28	<1	-	-	0.5	-		Similar to 2.4617 / Hastelloy B-2.
AS 748	Flux-core	d Wire fo	r Therma	l Spraying										 High corrosion resistance. Application in offshore industry.
A3 140	<0.1	-	0.5	22	-	bal.	13	<2.5	0.35	3	3	-	-	Similar to 2.4602 / Hastelloy C-22.
AS 754	Flux-core	ed Wire fo	r Therma	l Spraying										 Similar to DURMAT[®] AS 748. High corrosion resistance.
A3 734	0.1	-	-	16	-	bal.	17	2	-	-	<3	-		 Similar to 2.4610 / Hastelloy C-4.
AS 758	Flux-core	d Wire fo	r Therma	l Spraying										 Similar to DURMAT[®] AS 748. High corrosion resistance. Suitable for acids with chloride content.
10100	0.1	-	-	16	-	bal.	16	-	-	3.5	4	-		 Good resistance against friction. Similar to 2.4819 / Hastelloy C-276.

Wear and Corrosion Resistant Materials

				Τ١	PICAL (CHEMICA	L COMP	OSITIO	N* (Wt%	6)				
DURMAT®	с	Si	Mn	Cr	В	Ni	Мо	Co	V	W	Fe	WC	+	TYPICAL PROPERTIES
AS 711	Flux-core	ed Wire fo	or Therma	Spraying										Good erosion resistance.
A5 711	-	4	-	20	4	bal.	6	-	-	-	<2	-	Nb: 3.5	Resistant to corrosive gasest.
AS 752	Flux-core	ed Wire fo	or Therma	Spraying										• High B-content.
A3 132	0.7	4.8	-	21	3	bal.	-	-	-	-	-	-	-	High resistance against abrasion.
AS 753	Flux-core	ed Wire fo	or Therma	Spraying										Ni-Cr-B-Alloy for wear and corrosion protection.
	0.4	5	-	22	2.7	bal.	-	-	-	-	-	-	-	Suitable in chemical and food industry.
AS 755	Flux-core	ed Wire fo	or Therma	Spraying										Higher resistance against wear.
	0.05	-	-	22	-	bal.	9	-	-	-	-	-	Nb: 3.5	Corrosion resistant.
AS 761	Flux-core	ed Wire fo	or Therma	Spraying										 Flux-cored wire alloy with 50% FTC . High resistance against abrasion.
	0.4	-	-	10	2	bal.	-	-	-	-	-	-	FTC: 50	• Corrosion resistant.
AS 760	Flux-core	ed Wire fo	or Therma	Spraying										 Ni-Cr-B-Alloy with 10% refractory carbides for high wear and corrosion protection.
	0.4	3.7	-	21	3	bal.	-	-	-	-	-	-	SC: 10	• Can be fused.

Corrosion and Temperature Resistant Materials

DURM	AT®				Т	YPICAL (CHEMICA	AL COMP	OSITION	I* (Wt9	%)				
DORM	AI-	с	Si	Mn	Cr	В	Ni	Мо	Co	V	W	Fe	WC	+	TYPICAL PROPERTIES
46.741		Flux-core	ed Wire fo	or Therma	l Spraying	ξ.									High temperature resistance.
AS 741		-	-	-	16	-	bal.	-	-	-	-	3	-	Al: 4.5	Corrosion resistant.
46.767		Flux-core	ed Wire fo	or Therma	l Spraying	<u>.</u>									Bond and top coat.
AS 763	5	-	-	-	50	-	bal.	-	-	-	-	-	-	-	Good resistance against corrosion and oxidation.
46 76		Flux-core	ed Wire fo	or Therma	l Spraying	ξ.									 Resistant against corrosive gases in boiler atmosphere.
AS 768	3	-	-	-	50	-	bal.	-	-	-	-	-	-	Ti: 1	• Temperature resistant up to 980°C.

* The indicated values are average values, which can deviate from the actual values because of different process parameters or existing porosities.

ights of theii

All mentioned brands and trademarks are property of their respective owners and are copyr

DUDMAT®				T	YPICAL (CHEMICA	L COMP	OSITION	I* (Wt%	%)				
DURMAT®	С	Si	Mn	Cr	В	Ni	Мо	Co	V	W	Fe	WC	+	TYPICAL PROPERTIES
46 777	Flux-core	ed Wire fo	or Thermal	Spraying	ξ.									Oxidation resistant.
AS 777	-	-	-	22	-	bal.	-	-	-	-	-	-	AI- 10	Corrosion resistant.Bond coat.

Bonding Layer Materials

				Т	YPICAL C	CHEMICA	L COMP	OSITION	1* (Wt9	%)					
DURMAT®	С	Si	Mn	Cr	В	Ni	Мо	Co	v	W	Fe	WC	+	TYPICAL PROPERTIES	
AS 746	Flux-core	ed Wire fo	r Therma	l Spraying	ç.									Temperature resistant. Eventuation for board partian.	
AS 746	-	-	-	30	-	bal.	-	-	-	-	-	-	-	 Excellent for bond coating. Corrosion resistant. 	
AS 757	Flux-core	ed Wire fo	r Therma	ll Spraying	ļ.									Bond and top coat.	
AS 151	-	-	-	20	-	bal.	-	-	-	-	-	-	-	 Good resistance against corrosion and oxidation. 	
AS 767	Flux-cored Wire for Thermal Spraying. • Ni-alloy designed to be self-bonding. 767 • Good particle erosion resistance.														
AS 101	-	-	-	-	-	bal.	6	-	-	-	-	-	Al: 5		
AS 762	Flux-core	ed Wire fo	r Therma	ll Spraying	;.									Alloy for bond and buffer coatings.	
10102	-	-	-	9	-	bal.	5	-	-	-	<5	-	Al: 7		
AS 756	Flux-core	ed Wire fo	r Therma	ll Spraying	ç.									Bond and top coat.	
10100	-	-	-	-	-	bal.	-	-	-	-	-	-	Al: 5	Good resistance against particle erosion and oxidation.	
AS 775	Flux-core	ed Wire fo	r Therma	ll Spraying	;.									Bond and top coat.	
	-	-	-	-	-	bal.	-	-	-	-	-	-	Al: 10	Very good bonding characteristics.	
AS 776	Flux-core	ed Wire fo	r Therma	ll Spraying	ç.									Bond and top coat.	
	-	-	-	-	-	bal.	-	-	-	-	-	-	Al: 15	Very good bonding characteristics.	
AS 765	Flux-core	ed Wire fo	r Therma	ll Spraying	; .									 Bond coat. Dense and resistant to high temperature oxidation. 	
10105	-	-	-	-	-	bal.	-	-	-	-	-	-	Al: 20	Thermal shock resistant.	

Highly Wear Resistant Materials

				יד	YPICAL (CHEMICA	L COMP	OSITION	۱* (Wt۹	%)						
DURMAT®	с	Si	Mn	Cr	В	Ni	Мо	Co	v	W	Fe	WC	+	TYPICAL PROPERTIES		
40.015	Flux-cor	ed Wire fo	or Therma	al Spraying	ζ.									Thermal Spray coatings with high resistance against mineral		
AS 815	4.8	1.4	-	28	-	-	-	-	-	-	bal.	-	-	wear and friction.		
AS 816	Flux-cor	ed Wire fo	or Therma	al Spraying	ç.									Thermal Spray coatings with high resistance against mineral		
10010	5.1	1.7	-	22	-	-	-	-	-	-	bal.	-	Nb: 4	wear and friction.		
AS 827	Flux-cor	ed Wire fo	or Therma	al Spraying	;.									• MnCr-Alloy. • Non-magnetic.		
	0.5	0.4	16	14	-	1.2	0.5	-	0.2	-	bal.	-	-	Resistant against high shrinkage and impact.		
AS 829	Flux-cor	ed Wire fo	or Therma	al Spraying	ç.									Coatings with special primary carbides.		
	0.5	-	-	9	-	-	1.3	-	-	-	bal.	-	SC: 16	 High resistance against impact and erosion. 		
AS 805	Flux-cor	ed Wire fo	or Therma	al Spraying	;.									 Impact resistant. Abrasion and erosion resistant. Contains finest SC-carbides. 		
	2.6	-	-	7	-	-	1.3	-	-	-	bal.	-	SC: 5	Contains finest SC-carbides		
AS 839	Flux-cor	ed Wire fo	or Therma	al Spraying	ξ.									 Fe-Alloy contains complex carbide phases. Resistant against erosion and wear. 		
	1	-	-	<25	<6	-	<5	-	-	<10	bal.	-	Nb: <5	• Resistant against erosion and wear.		
AS 850	Flux-cor	ed Wire fo	or Therma	al Spraying	; .									 Flux-cored wire with 50% Fused Tungsten Carbide (FTC) for highly abrasion resistant coatings. 		
	2	-	0.4	-	-	-	-	-	-	-	bal.	-	FTC: 50	0,		
AS 864	Flux-cor	ed Wire fo	or Therma	al Spraying	ç.									 Highly resistant against mineral wear. Temperature resistant (max. 600°C). 		
	4.5	1	1.6	24	1	-	-	-	0.8	0.8	bal.	-	-			
AS 865	Flux-cor	ed Wire fo	or Therma	al Spraying	ç.									High resistance against wear and temperature.		
	5.2	1	0.4	21	-	-	7	-	1	2	bal.	-	Nb: 7			
AS 868	Flux-cor	ed Wire fo	or Therma	al Spraying	ç.									 High resistance against mineral wear. Temperature resistance (max. 800°C). 		
	5	0.8	0.4	38	2	-	-	-	-	-	bal.	-	-			
AS 897	Flux-cor	ed Wire fo	or Therma	al Spraying	ç.									 Abrasion and wear resistant. High bond strength. Non-skid surface 		
	-	1.3	0.6	14	1.8	4.5	-	-	-	26	bal.	-	Ti ₂ C ₃ : 6	Non-skid surface.		

DU	RMAT®				T	YPICAL (CHEMICA	L COMP	OSITION	1* (Wt%	⁄₀)				
DU	KMA1°	с	Si	Mn	Cr	В	Ni	Мо	Co	V	W	Fe	WC	+	TYPICAL PROPERTIES
		Flux-core	ed Wire fo	or Thermal	Spraying	ξ.									Abrasion and corrosion resistant.
AS	898	1.7	1.6	1.6	26	-	3	0.8	-	-	-	bal.	-	-	Increasing hardness in service.

Corrosion Resistant Materials

				T١	/PICAL C	HEMICA	L COMP	OSITION	I* (Wt9	%)				
DURMAT®	с	Si	Mn	Cr	В	Ni	Мо	Co	V	W	Fe	WC	+	TYPICAL PROPERTIES
46.012	Flux-core	ed Wire fo	r Therma	l Spraying										
AS 813	0.15	1	1.8	17	-	12	2.5	-	-	-	bal.	-	-	Austenitic stainless steel similar to AISI 316L/1.4404.
AS 814	Flux-core	ed Wire fo	r Therma	l Spraying										Austenitic stainless steel similar to AISI 202, geringe
AJ 014	0.15	1	8	18	-	5	-	-	-	-	bal.	-	-	Schrumpfung und gute Bearbeitbarkeit.
AS 842	Flux-core	ed Wire fo	r Therma	l Spraying										• Corrosion resistant.
10012	0.03	1	2	22	-	6	3	-	-	-	bal.	-	N: 0.2	
AS 852	Flux-core	ed Wire fo	r Therma	l Spraying										Martensitic stainless steel similar to AISI 403/1.4000.
10 002	0.3	0.5	0.3	13	-	0.5	-	-	-	-	bal.	-	P: 0.02 S: 0.02	Moderate corrosion resistance.

Wear, Corrosion and Temperature Resistant Materials

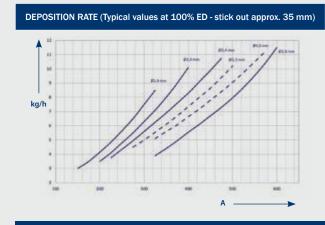
				T	YPICAL C	CHEMICA	AL COMP	OSITION	I* (Wt9	⁄o)				
DURMAT®	С	Si	Mn	Cr	В	Ni	Мо	Co	V	W	Fe	WC	+	TYPICAL PROPERTIES
AS 802	Flux-core	ed Wire fo	r Therma	l Spraying	ç.									• Temperature resistance (max. 920°C).
AS 802	-	1.6	1	30	4.5	-	-	-	-	-	bal.	-	-	High wear and corrosion resistance.
45 012	Flux-core	ed Wire fo	r Therma	l Spraying	ç.									• Similar to DURMAT® AS 802.
AS 812	-	1.6	1	30	4	-	-	-	-	-	bal.	-	-	 Wear and corrosion resistant coatings for feeding systems, e.g. for the chemical industry.
45.000	Flux-core	ed Wire fo	r Therma	l Spraying	ç.									 Similar to DURMAT[®] AS 802.
AS 888	0.1	1.3	1	30	2.8	-	-	-	-	-	bal.	-	-	• Temperature resistance (max. 870°C).

				T	YPICAL C	CHEMICA	AL COMP	OSITION	I* (Wt%	⁄₀)				
DURMAT®	с	Si	Mn	Cr	В	Ni	Мо	Co	V	W	Fe	WC	+	TYPICAL PROPERTIES
AS 880	Flux-core	ed Wire fo	r Therma	l Spraying	<i>z</i> .									High erosion and abrasion resistance.
A3 660	0.6	1.5	1	20	1	-	-	-	-	-	bal.	-	Ti: 3.5	• Temperature resistant (max. 650°C).
AS 890	Flux-core	ed Wire fo	r Therma	l Spraying	<u>g</u> .									Abrasive and corrosion resistant. Heat resistance.
A3 890	-	-	-	25	2	10	4	-	-	-	bal.	-	Cu: 2	 Temperature resistant (max. 870°C).
45.005	Flux-core	ed Wire fo	r Therma	l Spraying	<u>.</u>									High corrosion protection.
AS 896	0.2	1.1	1.2	21	2.2	8	3.2	-	-	-	bal.	-	Cu: 1.9	Abrasion resistant.

Special Materials (repair, high temperature corrosion, cavitation)

DUDMAT®				יד	/PICAL C	HEMICA	L COMP	OSITION	I* (Wt%	⁄₀)				
DURMAT®	С	Si	Mn	Cr	В	Ni	Мо	Co	V	W	Fe	WC	+	TYPICAL PROPERTIES
AS 811	Flux-core	ed Wire fo	r Therma	l Spraying										 Reconditioning of seats of rolling bearings.
A3 011	0.2	0.3	1.3	-	-	-	-	-	-	-	bal.	-	-	Reconditioning of sears of rothing bearings.
AS 821	Flux-core	ed Wire fo	r Therma	l Spraying										Moderate wear resistance.
A3 021	0.3	1.1	1	13	-	1	-	-	-	-	bal.	-	-	Good for basic wear and corrosion protection of machine parts.
AS 810	Flux-core	ed Wire fo	r Therma	l Spraying										Resistance against corrosion.
10 010	-	0.5	-	26	-	-	-	-	-	-	bal.	-	Al: 6	• Oxidation resistant (up to 870°C) in fluids with S-contamination.
AS 820	Flux-core	ed Wire fo	r Therma	l Spraying										FeCrAl-alloy for coatings against corrosive gases in boiler
	-	0.8	-	22	-	-	-	-	-	-	bal.	-	Al: 4.5	atmospheres and oxidation temperatures up to 870°C.
AS 836	Flux-core	ed Wire fo	r Therma	l Spraying										• Fe-Alloy with high Ni-content (36%).
	<0.1	0.6	1	-	-	36	-	-	-	-	bal.	-	-	Low expansion coefficient.
AS 895	Flux-core	ed Wire fo	r Therma	l Spraying										 Austenitic alloy with high chrome and cobalt content. Extremely resistant against corrosion.
	0.3	2.8	10	19	-	-	-	10	-	-	bal.	-		Erosion and cavitation resistant.

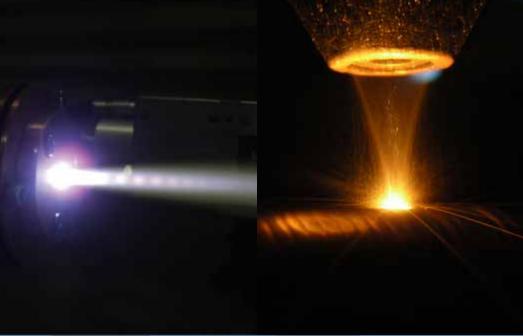
Co-based


DURMAT®	a			T	PICAL (CHEMICA	L COMP	OSITION	1* (Wt9	%)				TYPICAL PROPERTIES
DURMAT	С	Si	Mn	Cr	В	Ni	Мо	Co	V	W	Fe	WC	+	ITPICAL PROPERTIES
AS 901	Flux-core	ed Wire fo	r Therma	ll Spraying										Excellent against abrasion and friction wear.
AS 901	2.4	0.7	0.4	29	-	-	-	bal.	-	11	<3	-	-	 Corrosion resistance. Temperature resistant up to 950°C.
	Flux-core	ed Wire fo	r Therma	al Spraying										Excellent against abrasion and impact wear.
AS 906	1.1	1	0.6	28	-	-	-	bal.	-	4.5	<3	-	-	Corrosion resistant.
	Flux-cored Wire for Thermal Spraying. 912 • Superior wear and corrosion resistance.											Superior wear and corrosion resistance.		
AS 912	1.4	0.8	0.6	29	-	-	-	bal.	-	8	<3	-	-	For extrusion screws, wood and paper shredder.
40.001	Flux-core	ed Wire fo	r Therma	al Spraying										High impact and wear resistance.
AS 921	0.25	0.8	0.8	27	-	2.5	5.5	bal.	-	-	<3	-	-	Corrosion resistant.High toughness.
	Flux-core	ed Wire fo	r Therma	al Spraying										Excellent against abrasion and impact wear.
AS 931	0.5	1	1	26	-	-	-	bal.	-	7.5	<2	-	-	Corrosion resistant.
	Flux-core	ed Wire fo	r Therma	al Spraying										• Excellent against abrasion and impact wear.
AS 936	1	-	-	25	-	10	-	bal.	-	8	-	-	-	 High toughness. Corrosion resistant.
	Flux-core	ed Wire fo	r Therma	l Spraying										High abrasion resistance based on 50% WC-Co.
AS 951	-	1.25	-	14	1	-	-	bal.	-	-	-	-	WC- 12Co: 50	High toughness.Corrosion resistant.

Help Information

	DIM	ENSIONS, W	ELDING CUF	RRENT (TYPIC	CAL VALUES)
Process	0 [mm]	Welding current [A]	Arc Voltage [V]	Welding Speed [cm/min]	Stick out [mm]	Power type, Polarity
Open Arc	1.6 2.0 2.4 2.8 3.2	180 - 200 200 - 250 250 - 300 300 - 350 350 - 400	26 - 30 26 - 30 26 - 30 26 - 30 26 - 30	- - - -	30 - 35 35 - 40 35 - 40 35 - 40 35 - 40 35 - 40	Direct current (electrode to + pole)
UP	3.2 4.0	325 – 450 400 – 500	28 – 30 28 – 30	35 – 45 40 – 45	30 – 35 30 – 35	Direct current (+)

	MESH-MICRON CO	ONVERSION TABLE	
Micron	Mesh UK	Mesh USA (ASTM)	Mesh USA (TYLER)
8000	n/a	5/16 in	2.5
6700	1	0.265 in	3
5600	3	3.5	3.5
4750	3.5	n/a	4
4000	4	5	5
3350	5	6	6
2800	6	7	7
2360	7	8	8
2000	8	10	9
1700	10	12	10
1400	12	14	12
1180	14	16	14
1000	16	18	16
850	18	20	20
710	22	25	24
600	25	30	28
500	30	35	32
425	36	40	35
355	44	45	42
300	52	50	48
250	60	60	60
212	72	70	65
180	85	80	80
150	100	100	100
125	120	120	115
106	150	140	150
90	170	170	170
75	200	200	200
63	240	230	250
53	300	270	270
45	350	325	325
38	400	400	400
32	440	450	n/a
25	n/a	500	500
0	n/a	635	n/a


		SHIELDIN	IG GAS (DIN	I EN 439)		
Sym	nbol	Oxid	ising	Ine	ert	Reduc- tive
Group	Ident No.	C0 ₂	02	Ar	Не	H_2
	1	-	-	100	-	-
I	2	-	-	-	100	-
	3	-	-	bal.	0.95	-
	1	0 - 5	-	bal.	-	0 - 5
	2	0 - 5	-	bal.	-	-
M1	3	-	0 - 3	bal.	-	-
	4	0 - 5	0 - 3	bal.	-	-
	1	5 - 25	-	bal.	-	-
142	2	-	3 -10	bal.	-	-
M2	3	0 - 5	3 -10	bal.	-	-
	4	5 - 25	0 -8	bal.	-	-
	1	25 - 50	-	bal.	-	-
М3	2	-	10 - 15	bal.	-	-
	3	5 - 50	8 - 15	bal.	-	-
C	1	100	-	-	-	-
С	2	bal.	0 - 30	-	-	-

WELDING RECOMENDATIONS										
Process	0 [mm]	Welding Current [A]	Arc voltage [V]	Deposition rate [kg/h]						
Oxy- acetylene:										
- powder	-	-	-	0.2 - 1						
- rod	3 - 8	-	-	<2 kg						
Standard	4	180	24	1.62						
Electrode	5	250	25	2.01						
High	4	240	25	2.97						
Performance EleCtrode	5	350	26	4.30						
Solid wire	1.2	150 - 300	23-30	2.2 / 5						
Solid Wile	1.6	200 - 390	25 - 33	3 / 5.5						
	1.6	150 - 300	25 - 29	3/6.5						
Cored wire	2.4	240 - 400	26 - 31	4/7.5						
cored wire	2.8	270 - 450	26 - 31	5/9.5						
	3.2	300 - 500	26 - 31	6/11						
PTA	-	50 - 400	20 - 50	0.5 - 20						

SALES UNITS	Wire Coil	Wire Coil	Wood or Steel Coil	Drum	Drum
Net Weight (kg)	15	25	250/300	150	250
Ø outer (mm)	300	435	760	550	550
Ø hole (mm)	51.5	300	41	-	-
Width (mm)	103	105	290	-	-
Height (mm)	-	-	-	400	800
Standard	EN 759 - BS 300	EN 759 - B 435	EN 759 - S 760	-	-

ALLOY TYPES ACCORDING TO DIN EN 14700:2005										Hardness Conversion			Hardness Conversion				
Alloy symbol	Cuit	Alloy ratio of the pure weld metal deposit [weight-%]										HV	HB	HRC	HV	HB	H
	Suit- ability	с	Cr	Ni	Mn	Мо	W	V	Nb	other	rest	200	200	12.6 13.4	460	434	
		C	CI	INI	IVIII	IVIO	**	v	IND	other	Test	205 210	205 210	13.4	465 470	438 442	
e1	р	≤0.4	≤3.5	-	0.5 - 3	≤1	≤1	≤1	-	-	Fe	210	215	15.0	475	447	
e2	р	0.4 - 1.2	≤7	≤1	0.5 - 3	≤1	≤1	≤1	-	-	Fe	220	220	16.0	480	452	4
e3	st	0.4 - 0.5	1 - 8	≤5	≤3	≤4.5	≤10	≤1.5	-	Co, Si	Fe	225	225	17.0	485	457	
e4	st(p)	0.4 - 1.2	2 - 6	≤4	≤3	≤10	≤19	≤4	-	Co, Ti	Fe	230	230	18.0	490	462	
Fe5						3 - 5					Fe	235 240	235 240	19.0 20.0	500 510	469 477	
	cpstw	≤0.5	≤0.1	17 - 22	≤1		-	-	-	Co, Al		245	245	21.0	520	485	
e6	g p s	≤2.5	≤10	-	≤3	≤3	-	-	≤10	Ti	Fe	250	250	22.0	530	493	
e7	cpt	≤0.2	4 - 30	≤6	≤3	≤2	-	≤1	≤1	Si	Fe	255	255	22.8	540	501	5
e8	gpt	0.2 - 2	5 - 18	-	0.3 - 3	≤4.5	≤2	≤2	≤10	Si, Ti	Fe	260	260	23.6	550	509	
e9	k (n) p	0.3 - 1.2	≤19	≤3	11 - 18	≤2	-	≤1	-	Ti	Fe	265 270	265 270	24.4 25.2	560 570	517 525	
e10	c k (n) p z	≤0.25	17 - 22	7 - 11	3 - 8	≤1.5			≤1.5	Si	Fe	275	275	25.2	580	525	
							-	-				280	280	26.8	590	540	
e11	c n z	≤0.3	18 - 31	8 - 20	≤3	≤4	-	-	≤1.5	Cu	Fe	285	285	27.6	600	546	ļ
e12	c (n) z	≤0.08	17 - 26	9 - 26	0.5 - 3	≤4	-	-	≤1.5	-	Fe	290	290	28.3	610	555	
e13	g	≤1.5	≤6.5	≤4	0.5 - 3	≤4	-	-	-	B, Ti	Fe	300	300	29.7	620	563	
e14	g (c)	1.5 - 4.5	25 - 40	≤4	0.5 - 3	≤4	_	_	-	_	Fe	305 310	305 310	30.4 31.1	630 640	571 579	
-e15		4.5 - 5.5	20 - 40	≤4	0.5 - 3	≤2			≤10	В	Fe	315	315	31.8	650	588	
	g			24			-	-				320	320	32.4	660	596	
e16	g z	4.5 - 7.5	10 - 40	-	≤3	≤9	≤8	≤10	≤10	B, Co	Fe	325	324	33.0	670	-	ŗ,
e20	cgtz	hard materials⁵	-	-	-	-	-	-	-	-	Fe	330	328	33.6	680	-	
vi1	cpt	≤1	15 - 30	bal.	0.3 - 1	≤6	≤2	≤1	-	Si, Fe, B	Ni	335 340	332 336	34.2 34.8	690 700	-	
vi2	ckptz	≤0.1	15 -30	bal.	≤1.5	≤28	≤8	≤1	≤4	Co, Si, Ti	Ni	340	340	35.4	710	-	6
Ni3	cpt	≤0.1	1 - 15	bal.	0.3 - 1	≤6	≤2	≤1	-	Si, Fe, B	Ni	350	345	36.0	720	-	6
Ni4									- 1			355	349	36.5	730	-	(
	ckptz	≤0.1	1 - 15	bal.	≤1.5	≤28	≤8	≤1	≤4	Co, Si, Ti	Ni	360	353	37.0	740	-	6
vi20	cgtz	hard materials⁵	-	-	-	-	-	-	-	-	Ni	365 370	357 360	37.5 38.0	750 760	-	6
Co1	cktz	≤0.6	20 - 35	≤10	0.1 - 2	≤10	≤15	-	≤1	Fe	Со	375	365	38.5	770	-	(
Co2	tz(cs)	0.6 - 3	20 - 35	≤4	0.1 - 2	-	4 - 10	-	-	Fe	Co	380	369	39.0	780	-	6
Co3	tz(cs)	1-3	20 - 35	≤4	≤2	≤1	6 - 14	-	-	Fe	Со	385	373	39.5	790	-	6
Cu1	c (n)			≤6	≤15					Al, Fe, Sn	Cu	390	377	40.0	800	-	6
		-	-			-	-	-	-			395	381	40.5	810	-	6
11	сn	-	-	10 - 35	≤0.5	-	-	-	-	Cu, Si	Al	400 405	385 389	40.9 41.3	820 830	-	6
Cr	g n	1-5	bal.	-	≤1	-	-	15 - 30	-	Fe, B, Si, Zr	Cr	410	394	41.7	840	-	e
c: stainless n: non-magnetizable t: heat resistant							415	398	42.1	850	-	6					
g: abrasion resistant p: impact-resistant z: scale resistant k: work hardenable s: edge retention w: precipitation hardened					420		42.5	860	-	6							
() may not apply to all alloys of this type								425	406	42.9	870	-	6				
^a Alloys which are not included in this table are analogies signified, but the letter Z shall be put in front								430		43.3	880	-	6				
	vhich are no en fused ca						ie letter Z	shall be put	in front			440	418	44.1	890	-	6

DURUM VERSCHLEISS-SCHUTZ GMBH

Carl-Friedrich-Benz-Str. 7 47877 Willich, Germany Tel.: +49 (0) 2154 4837 0 Fax: +49 (0) 2154 4837 78

info@durum.de www.durmat.com

©2014 DURUM VERSCHLEISS-SCHUTZ GMBH